
JAVA FONCTIONNEL

LES COURS DU MODULE « JAVA FONCTIONNEL » DU SEMESTRE 3

KILLIAN REINE

Licence 2
orientation Informatique

2024-2025

TABLE DES MATIÈRES

1 Bases du langage Haskell 4
1.1 Paradigme impératif, et rappels . 4
1.2 Paradigme fonctionnel . 5
1.3 Langage fonctionnel - Haskell . 5

1.3.1 Opérations de base et inférence de type . 5
1.3.2 Écrire des fonctions sur le terminal de commandes 7
1.3.3 Test en Haskell . 9
1.3.4 Définition de fonctions par filtrage . 9
1.3.5 Un peu de récursivité . 11
1.3.6 Les listes en Haskell . 11
1.3.7 Traitement récursif sur les listes . 12
1.3.8 Fonction d’ordre supérieur . 15
1.3.9 Forme curryfiée . 17
1.3.10 Pliage de liste, foldl et foldl1 . 18
1.3.11 Le type maybe . 19
1.3.12 Une variante de map, le fmap . 20
1.3.13 Les monades . 21
1.3.14 L’opérateur >>= . 21

2 Les aspects fonctionnels de Java 23
2.1 Rétrospective sur l’héritage en Java . 23
2.2 Les interfaces en Java . 25
2.3 Généricité en Java . 28

2.3.1 Rappels de cours sur la généricité . 28
2.3.2 Les ArrayList, classe générique . 31
2.3.3 L’interface générique Collection<E> . 33
2.3.4 Les HashSet, une autre collection générique . 34
2.3.5 Zoom sur la boucle « for each » . 35

2.4 Les lambda-expressions . 36
2.5 4 interfaces fonctionnelles de base . 37

2.5.1 L’interface Function<T, R> . 37
2.5.2 Linterface Predicate<T> . 38
2.5.3 L’interface Consumer<T> . 40
2.5.4 L’interface Supplier<R> . 41

2.6 La classe Optional . 42
2.6.1 Construction d’un Optional . 42
2.6.2 Récupérer la valeur d’un Optional . 43

2

TABLE DES MATIÈRES 3

2.6.3 Déterminer si un Optional est vide . 43
2.6.4 Utilisation de map et filter sur un Optinal . 44
2.6.5 Utiliser un Optional pour éviter de multiples tests à null 45
2.6.6 Modifier une donnée encapsulée dans un Optional 47
2.6.7 Optional est une monade . 48

2.7 Gestion des Flux . 49
2.7.1 Généralités sur les flux . 49
2.7.2 Création de flux . 49
2.7.3 Un flux est un foncteur . 51
2.7.4 Propriétés générales sur les flux en Java . 52
2.7.5 Analogie avec les listes de Haskell . 53
2.7.6 Méthodes terminales . 54
2.7.7 Flux infinis et évaluation paresseuse . 55
2.7.8 Tris sur les fulx avec la méthode sorted() . 56

PARTIE 1

BASES DU LANGAGE HASKELL

1.1) Paradigme impératif, et rappels

Rappel de cours 1

➢ Un langage impératif est un type de langage de programmation où un programme est es-
sentiellement une liste d’instructions qui décrivent pas à pas les actions à réaliser par
l’ordinateur.

➢ Une instruction est un ordre donné à l’ordinateur.
➢ Une variable permet de stocker une valeur.
➢ L’affectation consiste à associer une information à une variable.
➢ L’état d’un programme désigne l’ensemble des valeurs des variables et structures de données

à un moment donné dans l’exécution du programme.
Une instruction permet de passer d’un état e1 à un état e2. Il peut arriver que celle ci ne
change pas l’état (e1 = e2), c’est le cas lorsqu’on affiche la valeur d’une variable à l’écran. On
appelle ceci des effets de bord.

➢ La trace d’exécution désigne la succession des états durant l’exécution du programme.

Exemple
Vous connaissez déjà pas mal de langages impératifs : Python, Processing, Shell, Assembleur, ...

DÉFINITION (donnée)

Les données sont l’objet de l’existence de l’informatique (étymologiquement, informatique vient
de la contraction de « information » et de « automatique ». Il s’agit donc de pouvoir traiter auto-
matiquement des informations).
On dit alors que l’on peut voir une donnée comme une information structurée.

Rappel de cours 2
Les données sont typées. Nous avons déjà vus les nombres, les booléens, les chaînes de carac-
tères,

Remarque Une fonction est un outil qui permet de transformer ou manipuler des don-
nées.

4

1.2. PARADIGME FONCTIONNEL 5

1.2) Paradigme fonctionnel

❏ Origine
Travail d’Alonzo Church dans les années 1932, en définissant le λ-calcul.

❏ Idée principale
Les fonctions sont des données comme les autres, on doit alors pouvoir les manipuler, les
passer en paramètre à d’autres fonctions, ...

❏ Conséquences
On a dû trouver une façon de considérer une fonction comme une donnée. Comme les autres
données, une fonction n’a pas de nom propre. Le « nom » d’une fonction correspond en réalité
au nom de la variable dans laquelle elle est enregistrée.
Exemple mathématiques
Pour définir une fonction quelconque :

f :R → R

x 7→ x+1

Ici, on a définit la fonction f (x)= x+1.
Utlisation : f (2)= 3.

Notions introduites par Church
Définition d’une fonction

λx.(x+1)

Exemple d’utilisation avec x = 2.

(λx.(x+1))(2)

Exemples plus complexes

✍ Passage d’une fonction en paramètre : λ(f , x).(f (x+1))

✍ Définir une fonction renvoyant une fonction : λx.(λy.(x+ y))
(λx.(λy.(x+ y)))(1)=λy.(1+ y)

❏ Seconde idée
Un programme est une composition de fonctions. Il n’y a donc plus de notions d’états.

❏ Conclusion

❍ Il n’y a plus de variable au sens où on l’entend. Désormais, une variable est une don-
née immuable (non-modifiable), comme en mathématiques, on construit des objets à partir
d’autres données.

❍ Il n’y a plus de boucle, on doit passer par l’appel de fonction (récursivité).

❍ Il n’y a if then else classique, désormais en programmation fonctionnelle, le if then else
à valeur d’expression, comme le ternaire de Java par exemple.

1.3) Langage fonctionnel - Haskell

1.3.1) Opérations de base et inférence de type
L’addition / Soustraction de deux nombres
Soient a et b deux nombres.
Lorsque l’on veut les additionner en Haskell, il suffit d’écrire :

ghci> a + b
ghci> a - b

6 CHAPITRE 1. BASES DU LANGAGE HASKELL

Le produit / Quotient de deux nombres
Lorsque l’on veut multiplier deux nombres entre eux, il suffit décrire :

ghci> a*b
ghci> a / b

Puissance d’un nombre
Lorsque l’on veut multiplier n fois le nombre a (« le mettre à la puissance n ») :

ghci> aˆn

Remarque

Pour noter un nombre négatif en haskell, on utilise la notation -a, cette dernière
possède quelques subtilités d’utilisations.
Exemple

ghci> -3
-3
ghci> -3 + 8
5
ghci> 8 + - 3
ERREUR

Le − peut servir pour dire qu’un nombre est négatif mais est aussi utilisé pour
effectuer des soustractions, il faut alors mettre des parenthèses.

ghci> 8 + (-3)
5

Affichicher la signature de type d’une expression
Pour afficher la signature de type d’une expression, il suffit d’écrire la comande :t

ghci> :t expression

Exemples
• L’expression succ a permet de rajouter 1 au nombre a. (=incrémenter a)

ghci> succ 6
7
ghci> :t succ
succ :: Enum a => a -> a

Quelques explications s’imposent pour comprendre la signification de la « signature de type » de
la fonction succ.

➣ Enum a signifie que la fonction succ prend en paramètre une valeur a dont le type doit faire
partie de la classe Enum.
Rappel de cours 3

La classe Enum englobe les types Int, Char, Bool, . . .

➣ a -> a signifie alors que la fonction succ prend un élément de type a (appartenant donc à la
classe Enum) et renvoi un élément du même type que a.

1.3. LANGAGE FONCTIONNEL - HASKELL 7

• L’expression tail permet d’afficher une liste sans son premier élément.

ghci> tail [1, 2, 3, 4]
[2, 3, 4]
ghci> :t tail
tail :: GHC.Stack.Types.HasCallStack => [a] -> [a]

Alors, tail prend en argument une liste d’élément a appartenant à une classe de type particulière
et elle renvoie une liste d’éléments du même type que celle de a. On ne se préoccupe pas de
l’expression « GHC.Stack.Types.HasCallStack »

• Chaine de caractères

ghci> :t "bonjour"
"bonjour" :: String

Signifie simplement que le type de "bonjour" est contenu dans la classe String.

• Liste d’entier, de caractères

ghci> :t [1, 2, 3]
[1, 2, 3] :: Num a => [a]
ghci> :t [’1’, ’c’, ’d’]
[’1’, ’c’, ’d’] :: [Char]

➣ [1, 2, 3] est une liste d’élément d’un certain type a. En Haskell, tout est homogènre, c’est
à dire que les éléments d’une liste doivent tous être du même type.
D’où la contrainte Num a qui signifie que a est d’un type contenu dans la classe Num (= type
numérique) comme Int, Integer, Foat, Double.

➣ [’1’, ’c’, ’d’] est simplement une liste d’élément de type contenu dans la classe Char.

1.3.2) Écrire des fonctions sur le terminal de commandes
Contexte
Les fonctions suivantes sont codées dirrectement dans le terminal.
Notre objectif vas être de coder une fonction double, et une autre somme que l’on améliorera pour
diverses utilisations.

(1) La fonction double
Le principe est le suivant : la fonction prend en paramètre un nombre et renvoi son double.

ghci> double x = 2*x
ghci> double 6
12

Nous pouvons compliquer l’utilisation de la fonction double. Maintenant, il faut utiliser cette fonc-
tion pour renvoyer le double de (8+1)*(6+1).

ghci> double (8+1)*(6+1)
126

8 CHAPITRE 1. BASES DU LANGAGE HASKELL

Pourquoi au lieu de faire 8+1 et 6+1 nous n’utilisons pas la méthode succ vue précédemment qui
permet d’incrémenter un nombre de 1.

ghci> double succ 8 * succ 6
ERREUR

Ici, vous obtenez une erreur car votre fonction double ne prend qu’un paramètre. Or les deux
appels à la méthode succ sont interprétés comme deux appels différents donc deux paramètres.
Il faut donc mettre des parenthèses.

ghci> double (succ 8 * succ 6)
126

Un petit mot sur le type de la fonction double.

ghci> :t double
double :: Num a => a -> a

Alors, la fonction double prend en paramètre a d’un type cointenu dans la classe Num et renvoie
un élément du même type.

(2) La fonction somme
Ici le principe reste simple : Prendre deux nombres et les additionner entre eux

ghci> somme x y = x+y
ghci> somme 3 5
8
ghci> somme succ 1 8
ERREUR
ghci> somme (succ 1) 8
10
ghci> somme (succ 1) succ 7 – ou somme succ 1 (succ 7)
ERREUR
ghci> somme (succ 1) (succ 7)
10
- Utilisation plus avancée
ghci> somme (succ 1 + 2 * head [5, 6, 8]) (succ 3*6+45)
81

Structure de la dernière instruction

somme (succ 1 + 2 * head [5, 6, 8])︸ ︷︷ ︸
paramètre 1

(succ 3 * 6 + 45)︸ ︷︷ ︸
paramètre 2

Voici son fonctionnement
• succ 1 + 2 * head [5, 6, 8]

On incrémente 1 et on récupère le premier élément de la liste 5
On a : 2+2∗5= 2+10= 12

• succ 3*6+45
On incrémente 3 de 1 puis on calcul 4∗6= 24 on ajoute 45.
on a alors : 24+45= 69

• Enfin c’est comme si on appelait somme 12 69 qui donne 81.

somme (succ 1 + 2 * head [5, 6, 8]) (succ 3*6+45) ⇐⇒ somme 12 69

1.3. LANGAGE FONCTIONNEL - HASKELL 9

Un petit mot concernat le type de la fonction somme

ghci> :t somme
somme :: Num a => a -> a -> a

Il y a une contrainte de type sur le.s paramètre.s (Num a =>) puisqu’il doit appartenir à la classe
Num. Ensuite a -> a -> a signifie que la fnction prend deux paramètres du même type et renvoi
un résultat du même type que les paramètres.
Structure du type

somme :: t
contrainte type︷ ︸︸ ︷
Num a => a -> a︸ ︷︷ ︸

2 paramètres

retour même type︷︸︸︷
-> a

1.3.3) Test en Haskell

Structure générale

if a then b else c

où

• a est le test effectué
• b l’instruction a effectué en cas de réalisation du test
• c l’instuction a effectué en cas d’échec du test

Remarque

➙ L’instruction if possède un type, celui de b et c
➙ Cela sous-entend donc que b et c sont de même type et qu’ils doivent tou-

jours être définis.
Contrairement à python, C ou autre, la condition else est alors obligatoire.

Exemple
On souhaite savoir si un nombre est pair, si c’est le cas on renvoi « nombre pair » sinon « nombre
impair ».

ghci> nombrePair x = if mod x 2 == 0 then "nombre pair" else "nombre impair"
ghci> nombrePair 63
"nombre impair"

Dans notre cas, on s’apperçoit bien que b et c sont définis et sont de même type String.
Qu’en est-il du type de ce test?

ghci> :t nombrePair
nombrePair :: Integral a => a -> String

Ici, ma condition prend un élément d’un type contenu dans la classe Integral, elle ne prend qu’un
paramètre et renvoi une chaine de caractères.

1.3.4) Définition de fonctions par filtrage

Remarque Définir une fonction par filtrage n’est pas possible dirrectement via le terminal
il faut laors passer par un fichier, donc par un programme.

10 CHAPITRE 1. BASES DU LANGAGE HASKELL

DÉFINITION (Pattern matching)

Le Pattern matching (ou filtrage) en Haskell permet de définir une fonction, effectuant des op-
pérations différentes selon les arguments (=paramètres) qui lui ont été donnés.
Chaque « partern » permet alors de décrire les valeurs de l’argument ainsi, la fonction applique
le code associé à ce dernier.

Exemple
1. Fonction Zero

Codons une fonction par filtrage qui permet de renvoyez "Zéro" si le nombre entré est 0 sinon
renvoyer "Non-zéro".

1 zero :: (Eq a, Num a) => a -> String
2 zero 0 = "Zéro"
3 zero n = "Pas zéro"
4
5 main :: IO ()
6 main = do
7 print (zero 0)
8 print (zero 5)

"Zéro"
"Pas zéro"

Explications
• J’ai spécifier la signature de type de ma fonction

Elle prend en argument un élément d’un type appartenant sois à la classe Eq, sois à la classe
Num, et elle renvoie une chaine de caractères String.

• J’ai spécifier le retour des différents cas :
➙ Si n = 0, renvoyer "Zéro"
➙ Si n ̸= 0, renvoyé "Pas zéro"

• J’ai terminé en définissant ce que fera le programme principal, ici il testera la fonction zero.

2. Fonction discriminant
Codons une fonction qui permet de savoir quel est le nombres de racines d’un polynôme de degré
2 en utilisant son discriminant.

1 discriminant :: (Ord a, Num a) => a -> String
2 discriminant delta
3 | delta > 0 = "Deux racines réelles"
4 | delta < 0 = "Aucune racine réelle"
5 | otherwise = "Une racine réelle"
6
7 -- Utilisations possible --
8 print (discriminant 0)
9 print (discriminant 5)

10 print (discriminant (-3))

"Une racine réelle"
"Deux racines réelles"
"Aucune racine réelle"

1.3. LANGAGE FONCTIONNEL - HASKELL 11

1.3.5) Un peu de récursivité

Rappel de cours 4
Une fonction est dite récursive lorsqu’elle s’appelle elle-même.

Exemple
1. Fonction u

Ici, on code une suite mathématique définie par récurrence, elle renverra 0 si n = 0 et 2un−1+3 si
ce n’est pas le cas.

∀n ∈N, un =
{

u0 = 0
un+1 = 2(un−1)+3

(a) VERSION 1
On défini la fonction de manière récursive.

1 u :: Int -> Int
2 u 0 = 1
3 u n = 2*u(n-1)+3
4
5 -- Utilisation --
6 print (u 4)

125

(b) VERSION 2
On défini la fonction avec un opérateur ternaire if then else.

1 u n = if n == 0 then 0 else 2*u(n-1)+3

2. Fonction sommeREP
On souhaite calculer la somme des éléments 0 à n notée

n∑
i=0

.

1 sommeREP :: Int -> Int
2 sommeREP 0 = 0
3 sommeREP n = n + sommeREP (n - 1)
4
5 main :: IO ()
6 main = do
7 -- let pour définir une variable --
8 let n = 5
9 print (sommeREP n)

15

1.3.6) Les listes en Haskell

DÉFINITION (liste)

En haskell, une liste permet de stocker un certain nombre de variables du même type.
Structure générale :

[elem1, elem2, elm3, ..., elemn]

12 CHAPITRE 1. BASES DU LANGAGE HASKELL

1. Liste vide
La liste vide est donnée sous la forme []

2. Liste en extension
La liste en extension est donnée sous la forme [elem1, elem2, elm3, ..., elemn].

3. Liste en adjonction entête
Permet de rajouter un élément en tête de liste, elem : liste

4. Concaténation
Pour ajouter deux listes entre-elles, il suffit d’utiliser l’oppérateur ++.

liste1 ++ liste2

5. Accès à l’élément i on utilise l’instruction liste !! i
6. head permet de retourner le premier élément d’une liste.
7. tail permet d’afficher une liste sans son premier élément.

Remarque

➙ head[] déclanche une erreur, on ne peut pas récupérer le premier élément
d’une liste vide.

➙ tail[] déclanche une erreur, on ne peut enlever un élément d’une liste qui
est déjà vide.

ghci> head[]
ERREUR
ghci> tail[]
ERREUR

8. Récupérer la taille d’une liste avec length

Exemples d’utilisations dans le terminal

ghci> 1 : [2, 3]
[1, 2, 3]
ghci> [1, 2, 3, 4] ++ [5, 6, 7]
[1, 2, 3, 4, 5, 6, 7]
ghci> [8, 4, 9, 5]!!2
9
ghci> []!!0
ERREUR
ghci> head[1, 2, 3]
1
ghci> tail[1, 2, 3]
[2, 3]
ghci> length[45, 78, 12, 54]
4
length[]
0

1.3.7) Traitement récursif sur les listes
Objectifs

• Somme d’éléments d’une liste
• Ajouter 1 aux élément d’une liste
• Doubler chaque élément d’une liste

1.3. LANGAGE FONCTIONNEL - HASKELL 13

Faire la somme des éléments d’une liste
1. Identification des différents cas

Rappel de cours 5
Une liste est une stucture permettant de stocker des données du même type. Elle peut être
définie avec des valeurs ou alors vide.

Deux cas se distinguent alors :
❏ Le cas d’une liste vide, on renverra alors 0
❏ Le cas d’une liste non-vide

2. Le programme

1 sommeListe :: Num a => [a] -> a
2 sommeListe [] = 0
3 sommeListe (x:y) = x + sommeListe y
4
5 print (sommeListe [])
6 print (sommeListe [1, 5, 8])

15

3. Explication de l’algorithme
Le cas de base est lorsque la liste est vide, on renvoie alors 0.
Pour les autres cas :

➙ x représente le premier élément de la liste
➙ y représente le reste de la liste

On ajoute alors à la somme récursive les éléments restant dans y.
Voici ce que fait réellement le programme.
Soit L = [2, 3, 4] la liste étudiée.
sommeListe [2, 3, 4] = 2 + sommeListe [3, 4]
sommeListe [2, 3, 4] = 2 + (3 + sommeListe [4])
sommeListe [2, 3, 4] = 2 + (3 + (4 + sommeListe [])
sommeListe [2, 3, 4] = 2 + (3 + (4 + 0))
sommeListe [2, 3, 4] = 2 + 3 + 4 + 0 = 9

Ajouter 1 à chacun des éléments de la liste
1. Objectif

Accéder à chacun des éléments d’une liste puis les incrémenter de 1.

increment [1, 2, 3, 4] = [2, 3, 4, 5]

Voilà le résultat que nous voulons obtenir.
2. Le programme

1 increment :: Num a => [a] -> [a]
2 increment [] = []
3 increment (x:y) = (x+1) : increment y
4
5 print (increment [])
6 print (increment [1, 5, 8])

[2, 6, 9]

14 CHAPITRE 1. BASES DU LANGAGE HASKELL

3. Explications de l’algorithme
De la même manière que pour la fonction précédente, x représente le premier élément de la liste
et y le reste.
Lorsque l’on appelle la fonction, on récupère le premier élément, on lui ajoute 1 et on appelle
récursivement la fonction sur l’élément suivant et ainsi de suite.
Voici ce que fait réellement le programme.
increment [1, 2 ,3] = (1+1) : increment [2, 3]
increment [1, 2 ,3] = (1+1) : ((2+1) : increment [3])
increment [1, 2 ,3] = (1+1) : ((2+1) : ((3+1) increment []))
increment [1, 2 ,3] = (1+1) : (2+1) : (3+1) : []
increment [1, 2, 3] = 2 : 3 : 4 : []
increment [1, 2, 3] = [2, 3, 4]

Doubler chaque éléments d’une liste
ici, exactement la même chose que pour ajouter 1, sauf que là, on met ×2.

1 doubler :: Num a => [a] -> [a]
2 doubler [] = []
3 doubler (x:y) = (x*2) : doubler y
4
5 print (doubler [])
6 print (doubler [1, 5, 8])

[2, 10, 16]

Exercice

Tours de Hanoi.
Ajouter au cours lors de la prochaine MAJ

1.3. LANGAGE FONCTIONNEL - HASKELL 15

Pour aller plus loin sur les listes
➙ last [...] permet de retourner le dernier élément d’une liste.
➙ init [...] permet de retourner la liste privé de son dernier élément.
➙ take n [...] premet de prendre les n premiers éléments d’une liste.
➙ drop n [...] permet de supprimer les n premiers éléments d’une liste.

1.3.8) Fonction d’ordre supérieur

DÉFINITION (fonction d’ordre supérieur)

On appelle fonction d’ordre supérieur une fonction paramétrée par au moins une autre fonction.

1. La fonction map

Remarque
Les traitements récursifs vus précédemments (incrementer, doubler) sont si-
milaires, à l’opération. On vas alors passer cette opération en paramètre en
plus de la liste, c’est la fonction map.

(a) Fonction traitement
La fonction traitement permet de prendre deux arguments f une fonction prenant un élé-
ment de type a et renvoie une liste d’éléments de type b ainsi qu’une liste d’élément de type
a.
La fonction effectue donc la fonction f sur les éléments d’une liste.

1 traitement :: (a -> b) -> [a] -> [b]
2 -- cas d’une liste vide --
3 traitement f [] = []
4 -- cas d’une liste non -vide --
5 traitement f (x:y) = f x : traitement f y

(b) Réécriture de increment avec la fonction traitement

1 incrementIntermediaire :: [Int] -> [Int]
2 incrementIntermediaire xs = traitement (\x -> x + 1) y

(c) Différence avec map

1 incrementMap :: [Int] -> [Int]
2 incrementMap y = map (+1) y

DÉFINITION (map)

La fonction map est une fonction d’ordre suppérieure qui permet d’appliquer une fonction à
chacun élément d’une liste.

Signature de type

1 map :: (a -> b) -> [a] -> [b]

La fonction map prend deux arguments :

❏ (a -> b) Une fonction qui prend elle-même un argument de type a et renvoi un résultat de
type b.

❏ [a] Une liste d’éléments de type a.

Et, elle renvoie une liste d’élément de type b.

16 CHAPITRE 1. BASES DU LANGAGE HASKELL

Exemple
On veut prendre une liste d’entiers, puis on veut les multiplier tous par 2.

map (\ x -> x*2) [1, 2, 3, 4]
[2, 4, 6, 8]

Dans notre exemple, la signature de type est donnée par :

1 map :: (Int -> Int) -> [Int] -> [Int]

2. La fonction filter

DÉFINITION (filter)

La fonction d’ordre supérieure filter est utiliser pour « filtrer » les éléments d’une liste à
l’aide d’une condition.
Cette dernière renvoie alors une liste d’élément qui respectent la condition établie.

Remarque
La fonction filter permet de sélectionner les éléments d’une liste selon une
condition, opération.

filter (condition) liste

Signature de type

1 filter :: (a -> Bool) -> [a] -> [a]

La fonction filter prend deux arguments :
❏ (a -> Bool) Une fonction dite « de filtrage » qui prend elle-même un argument de type a et

renvoi un résultat de type Bool.

❏ [a] Une liste d’éléments de type a.
Et, elle renvoie la listedes éléments de type a respectant la condition de filtrage.

Exemple
Récupérer les nombres pairs d’une liste
Version terminal

filter (\x -> mod x 2 == 0) [3, 4, 7, 8, 12]
[4, 8, 12]

Version programme externe

1 -- Signature de type de la fonction --
2 estPair :: Int -> Bool
3 -- Corps de la fonction --
4 estPair x = x mod 2 == 0
5
6 -- Utilisation --
7 result = filter estPair [1, 7, 6, 4, 2, 0, 78, 41, 1]
8 print result

[6, 4, 2, 0, 78]

La fonction filter est donc appelée pour chaque élément de la liste. Si cette dernière renvoie
True, l’élément est conservé dans la liste de retour. Sinon, l’élément est enlevé.

1.3. LANGAGE FONCTIONNEL - HASKELL 17

Exemple (avec les caractères)
On souhaite récupérer les voyelles dans une chaine de caractère.
Version 1 - Brutale

filter (\c -> c ‘elem‘ "aeiouAEIOU") "Bonjour vous"
oouou

Version 2 - Programme externe

1 estVoyelle :: Char -> Bool
2 estVoyelle c = c ‘elem ‘ "aeiouAEIOU"
3
4 main = print (filter estVoyelle "bonjour vous")

oouou

1.3.9) Forme curryfiée

DÉFINITION (currification)

La currification en haskell est une technique qui permet de transformer uen focntion qui prend
plusieurs arguments en une suite de fonctions ne prenant qu’un unique argument.

Prenons un exemple concrêt
Considérons la fonction addition suivante :

1 add :: Int -> Int -> Int
2 add x y = x + y

Cette dernière prend donc deux arguments de type entiers et renvoie la somme de ces deux derniers.
Méthode de currification

❏ Ne considérons que des fonctions ne prenant qu’un seul argument.
❏ La première fonction prend x comme argument et elle renvoie une autre fonction qui attend y
❏ La nouvelle fonction retourne alors x+y

1 -- On reprend la fonction initiale --
2 add :: Int -> Int -> Int
3 add x y = x + y
4
5 main = do
6 let fctIntermed = add 3
7 print (fctIntermed 5)

Explications du fonctionnement
1. On utilise let pour créer une variable
2. fctIntermed est une fonction qui appelle add 3
3. Grâce à la currification, lorsque l’on appelle add 3, nous fournissons un premier argument, on

obtient alors une nouvelle fonction qui attend un second argument.
4. De manière générale on a :

1 let fctIntermed = 3 -- Revient à 3 + y --

5. Le fait ensuite d’appeler cette fonction intermédiaire et de lui donner 5 en argument fait que :

fctIntermed 5 = 3+ 5 donc 8

18 CHAPITRE 1. BASES DU LANGAGE HASKELL

1.3.10) Pliage de liste, foldl et foldl1

DÉFINITION (fold, foldl, foldr)

La fonction fold (ou ses équivalents foldl ou encore foldr est utilisée pour résuire une liste à
une seule valeur en appliquant une fonction de manière itérative.

Remarque foldl signifie pliage « à gauche », foldr quant à lui pliage « à droite ».

Prenons un exemple concrêt
Exemple
Considérons la fonction suivante qui calcule la somme des éléments d’une liste

1 somme :: [Int] -> Int
2 somme liste = foldl (+) 0 liste

Fonctionnement de la fonction
On considère qu’elle prend une liste L de n éléments.

1. (+) c’est l’opération que l’on souhaite appliquer aux éléments de la liste.
Ici c’est l’addition.

2. 0 c’est la valeur initiale du résultat
3. foldl signifie que l’on parcours la liste de gauche à droite.
4. foldl parcours alors toute la liste en ajoutant au résultat chaque élément de cette dernière un à

un. Sachant que le résultat est initialisé à 0.

Quelques exemples
Exemple 2, produit des éléments d’une liste

1 produit :: [Int] -> Int
2 produit liste = foldl (*) 0 liste

Exemple 3, concaténation de chaine
foldl fonctionne aussi sur les chaines de caractères.

1 concatenation :: [String] -> String
2 concatenation liste = foldl (++) "" liste

Remarque
Ne vous trompez pas entre foldl et foldr, si vous utilisez foldr, vous par-
courrez la liste de droite à gauche, c’est à dire du dernier élément de la liste
au premier.

DÉFINITION (foldl1)

foldl1 est une variante de foldl qui est utilisée pour réduire une liste à une seule valeur en
utilisant une fonction binaire.

Remarque
Contrairement à fold, foldl1 n’a pas nécessairement besoin de valeur initiale.
Le premier élément de la liste passée en argument sert de valeur initiale du
résultat.

Signature de type

1 foldl1 :: (a -> a -> a) -> [a] -> a

1.3. LANGAGE FONCTIONNEL - HASKELL 19

La fonction foldl1 prend deux arguments :

❏ (a -> a -> a) Une fonction qui prend elle-même deux arguments de type a et renvoi un résultat
de type Bool.

❏ [a] Une liste d’éléments de type a.

Elle renvoie une valeur de type a pour résultat.
Exemple, maximum d’une liste

1 maximumListe :: [Int] -> Int
2 maximumListe liste = foldl1 max liste
3
4 main :: IO ()
5 main = do
6 -- Utilise foldl1 pour trouver le maximum --
7 let resultat = maximumListe [4, 6, 10, 2, 8]
8 print resultat -- Affiche 10 --

Remarque

fold1 échouera si la liste donnée est vide car il n’aura pas de valeur de retour.
On a rappelé précédemment que la valeur de retour initiale est le premier élé-
ment de la liste passée en paramètre. Si il n’y a pas d’éléments dans la liste,
foldl1 ne renvoi rien donc une erreur.

1.3.11) Le type maybe

DÉFINITION (maybe)

En haskell, le type maybe est un type de donnée qui permet de représenter une valeur qui peut
être présente ou absente.

Définition du type maybe

1 data maybe a = Nothin | Just a

❏ Nothing représente l’absence de valeur
❏ Just a représente la présence d’une valeur de type a.

Exemple, une division bancale
On souhaite faire une fonction qui divise deux nombres mais ne peut pas diviser par 0.

1 division :: Int -> Int -> Maybe Double
2 division _ 0 = Nothing
3 division x y = Just(fromIntegral x / fromIntegral y)
4
5 main :: IO ()
6 main = do
7 print (division 10 2) -- Affiche Just 5.0 --
8 print (division 10 0) -- Affiche Nothing --

Remarque
fromIntegral x permet de convertir un entier x en un nomble à virgule flot-
tante.
Maybe peut être utiliser avec foldl et ses variante, puis avec fmap, map, >>=.

20 CHAPITRE 1. BASES DU LANGAGE HASKELL

1.3.12) Une variante de map, le fmap

DÉFINITION (fmap)

La fonction fmap en haskell permet d’appliquer une fonction à une valeur à l’intérieur d’une struc-
ture de données qui est instance de la classe de type Functor.
Inclu des types comme les listes, Maybe, ...

Signature de type

1 fmap :: Functor f => (a -> b) -> f a -> f b

fmap prend deux arguments :

❏ Functor f impose que f doit être une structure de données appartenant à l’instance Functor
❏ (a -> b) une fonction qui prend en argument une valeur de type a et renvoi une valeur de type

b.
❏ f a une structure de données contenant des éléments de type a

elle renvoie f b, une structure de données contenant des éléments de type b.

Exemple (1) sur les listes

1 fmap (+1) [1, 2, 3]

[2, 3, 4]

Exemple (2) avec Maybe

1 fmap (*2) Just 5
2 fmap (*2) Nothing

Just 10
Nothing

Remarque
Pour le second exemple fmap (2*) Nothing ne prend même pas la peine de
traiter la fonction puisque Nothing est passé en argument, rien est à transfor-
mer.

Rappel de cours 6
Un foncteur est une strucure de données qui peut être transformée à l’aide d’une fonction.
En haskell, un functor est défini par une classe de type Functor, qui permet d’appliquer une fonc-
tion à des valeurs contenues dans la structure de données sans la détruire.

1.3. LANGAGE FONCTIONNEL - HASKELL 21

1.3.13) Les monades

DÉFINITION (monade)

(1) Définition brute
Une monade est une abstraction qui représente une computation qui peut être enchaînée.

(2) Définition avec Haskell
En haskell, uen monade est définie par la classe de type Monad, qui fournit une interface pour
travailler avec des valeurs encapsulées dans un contexte.

(3) Définition intuitive
Une monade permet de composer des opérations tout en gardant votre code propre et
fonctionnel, comme un conteneur qui vous aide à gérer ce qui se trouve à l’intérieur.

Définition de la classe Monad

1 classe Applicative m => Monad m where
2 return :: a -> m a
3 (>>=) :: m a -> (a -> m b) -> m b

Explications :

❏ return est une fonction qui prend une valeur et une place dans un contexte monadique.
Exemple
Pour une monade Maybe, return 5 renverra Just 5

❏ (>>=) est l’opérateur de liaison qui prend une valeur encapsulée de type m a et une fonction qui
transforme cette valeur en type m b.

Exemple avec Maybe

1 safeDivide :: Int -> Int -> Maybe Int
2 safeDivide _ 0 = Nothing
3 safeDivide x y = Just (x div y)
4
5 result :: Maybe Int
6 result = Just 10 >>= \x -> safeDivide x 2
7 print result

Just 5

Ici, >>= permet d’enchainer la division sécurisée, tout en gérant le cas où la division par 0 se produirais.

1.3.14) L’opérateur >>=
DÉFINITION (>>=)

L’opérateur >>= est l’opérateur de liaison pour les monades. Il permet de chainer les calculs
monadiques ensemble.

Signature de la >>=
1 (>>=) :: Monad m => m a -> (a -> m b) -> m b

22 CHAPITRE 1. BASES DU LANGAGE HASKELL

L’opérateur >>= :

❏ Monad m => contraint l’opérateur >>=, en gros, l’opérateur >>= fonctionne pour tout m qui est une
monade.

❏ m a, la monade d’entrée contient des éléments de type a.
❏ (a -> m b) une fonction prenant une valeur de type a extraitre de la monade m a, elle renvoie

une nouvelle valeur monadique de typ b m b.

L’opérateur >>= retourne une monade de type m b. En gros, on part d’une monade de type a et on
retourne une autre monade de type b.

Exemple

1 safeDivide :: Int -> Int -> Maybe Int
2 safeDivide _ 0 = Nothing
3 safeDivide x y = Just (x div y)
4
5 result :: Maybe Int
6 result = Just 10 >>= (\x -> safeDivide x 2) >>= (\y -> safeDiv y 0)
7 print result

Fonctionnement du programme

• Just 10 >>= (-> safeDivide x 2)
Ici dans un contexte monadique Just 10 est extrait alors x = 10
On applique la fonction safeDiv x 2 qui renvoie 5.

• Just 5 >>= (-> safeDiv y 0)
Toujours dans un contexte monadique, on extrait Just 5 d’où y=5
On applique la fonction safeDiv y 0 qui renvoie Nothing cat le cas d’une division par 0 n’est pas
défini.

Nothing

PARTIE 2

LES ASPECTS FONCTIONNELS DE JAVA

2.1) Rétrospective sur l’héritage en Java

Pour rappel Java est un langage de programmation orienté objet (POO), la notion d’héritage est donc
un aspect important du langage. C’est pour cette raison que des rappels s’imposent :

DÉFINITION (héritage)

L’héritage permet de réutiliser du code déjà existant et de créer des relations hiérarchiques entre
les classes.

Soit M et F deux classes distinctes.
On considère alors qu’une classe F dite « classe fille » peut hériter des attributs et des méthodes
d’une autre classe M dite « classe mère ». En Java, pour spécifier qu’une classe hérite d’une autre on
utilisera le mot clé extends.

Exemple concret
Prenons un exemple assez ludique, sur une table nous disposons de deux fruits, une pomme et une
orange. Nous sommes tous d’accord pour dire que ces derniers n’ont pas la même couleur, le même
goût donc qu’ils sont différents. Pourtant ce sont tous les deux des fruits malgré leurs caractéristiques
différentes.

1 public classe Fruit {
2 private String nom;
3 private String couleur;
4 private double poids;
5
6 public Fruit(String nom , String couleur , double poids) {
7 this.nom = nom;
8 this.couleur = couleur;
9 this.poids = poids;

10 }
11
12 public String getNom () {
13 return nom;
14 }
15
16 public String getCouleur () {
17 return couleur;
18 }
19

23

24 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

20 public double getPoids () {
21 return poids;
22 }
23
24 public void afficherInfo () {
25 System.out.println("Nom: " + nom);
26 System.out.println("Couleur: " + couleur);
27 System.out.println("Poids: " + poids + " grammes");
28 }
29
30 public double calculerPrix () {
31 return 0.0;
32 }
33 }

Nous avons donc définit au dessus une classe Fruit, elle possède les attributs Nom, Poids, couleur
et forme ainsi que deux méthodes principales permettant d’afficher les informations du fruits et de
calculer son prix.

1 public classe Pomme extends Fruit {
2 private String variete;
3
4 public Pomme(String nom , String couleur , double poids , String variete) {
5 super(nom , couleur , poids);
6 this.variete = variete;
7 }
8
9 public String getVariete () {

10 return variete;
11 }
12
13 public void setVariete(String variete) {
14 this.variete = variete;
15 }
16
17 @Override
18 public void afficherInfo () {
19 super.afficherInfo ();
20 System.out.println("Variété: " + variete);
21 }
22
23 @Override
24 public double calculerPrix () {
25 /* Prix fictif : 2 euros par kilo */
26 return getPoids () * 0.002;
27 }
28 }

Le mot clé extends lors de la définition de la classe Pomme signifie que celle-ci hérite de la classe Fruit,
ce qui implique que :
Dans la suite de l’exemple, les classes Fruit et Pomme seront représentées par les lettres F et P
respectivement.

• En héritant de F la classe P hérite de tous les attributs et les méthodes de F. Ceci évite la
répétition de code, entre autre, la classe P n’a pas besoin de redéfinit les attributs nom, couleur
et poids car ils sont présents dans la classe F.

• La classe P peut donc utiliser les méthodes et les attributs de la classe F, si ces derniers pos-
sèdent une visibilité adéquat (public, ou protected).

• La classe P peut ajouter ces propres méthodes et attributs en plus de ceux hérités de la classe
F, ici ajout de l’attribut variete et redéfinition des méthodes de Fruit.

2.2. LES INTERFACES EN JAVA 25

• Le mot clé super permet d’appeler une méthode de la classe F.

Voici comment utiliser ces classes.

1 public class Main {
2 public static void main(String [] args) {
3 Pomme golden = new Pomme("Golden", "Jaune", 150, "Golden");
4 golden.afficherInfo ();
5 System.out.println("Prix: " + golden.calculerPrix () + " euros");
6 }
7 }

Nom: Golden
Couleur: Jaune
Poids: 150.0 grammes
Variété: Golden
Prix: 0.3 euros

Remarque

Utilisation de @override
Le mot clé @override utilisé avant deux méthodes de la classe P permet de
dire au compilateur que l’on redéfinit des méthodes de la classe parent (ici
c’est la classe F).
Par exemple, en prenant la mathode afficherInfo() de la classe Pomme, on
redéfinit la méthode de la classe mère, c’est à dire que lorsque l’on appellera
cette méthode avec un objet de type P, on exécutera la méthode qui se trouve
dans cette classe fille.

2.2) Les interfaces en Java

DÉFINITION (Interfaces)

Les interfaces en Java peuvent être présentées comme étant un contrat qui définit un ensemble
de méthode abstraite que qu’une classe doit implémenter.
En gros toute classe qui implémente une interface doit contenir le code de toutes les fonctions
de cette dernière.
Une classe peut implémenter plusieurs interfaces.

Rappel de cours 7
On appelle méthode abstraite une méthode de classe définie sans corps.
De manière générale :

visibilite typeRetour nomMethode (parametre1, ..., parametreN) ;

Cette définition est aussi appelée « signature » de la fonction.

Exemple, les outils sur Minecraft
• Un peu de contexte pour comprendre le problème

Minecraft est un jeu bac à sable où les outils sont des éléments plus qu’important puisqu’ils
permettent au joueur de miner, couper du bois, ou encore creuser.
Chaque outil a une utilité et un fonctionnement bien spécifique, mais chacun d’entre eu doit
pouvoir intéragir avec le monde.

26 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Rappels :

❏ Une Hache (Axe) permet de couper du bois.
❏ Une Pioche (Pickaxe) permet de miner de la pierre, des minerais.
❏ Une Pelle (shovel) permet quant à elle de creuser et récupérer du sable, de la terre, du gravier

• Implémentation sans interfaces

1 class Pickaxe {
2 public void useTool () {
3 System.out.println("Miner un bloc avec une pioche ...");
4 }
5 }
6
7 class Axe {
8 public void useTool () {
9 System.out.println("Couper du bois avec une hache ...");

10 }
11 }
12
13 public class MinecraftWithoutInterface {
14 public static void main(String [] args) {
15 Pickaxe pickaxe = new Pickaxe ();
16 Axe axe = new Axe ();
17
18 useSpecificTool(pickaxe);
19 useSpecificTool(axe);
20 }
21
22 public static void useSpecificTool(Object tool) {
23 if (tool instanceof Pickaxe) {
24 Pickaxe pickTool = (Pickaxe) tool;
25 pickTool.useTool ();
26 } else if (tool instanceof Axe) {
27 Axe axeTool = (Axe) tool;
28 axeTool.useTool ();
29 } else {
30 System.out.println("Outil inconnu.");
31 }
32 }
33 }

Maintenant j’aimerais rajouter une classe Shovel qui contiendra les spécificités de la Pelle. Mais
on remarque déjà qu’il y a quelques problèmes.

➩ Dans la classe principale MinecraftWithoutInterface, la méthode useSpecificTool qui
permet d’afficher quelle outil on veut utiliser est obligée de faire des cast afin de savoir à
quel classe appartient l’objet passé en argument.
En gros là on a deux classes donc deux cast, mais plus on rajoutera de class (Shovel, Sword,
...) plus il y aura de cast pour savoir quel objet on manipule.

➩ Si vous êtes à plusieurs développeurs à travailler sur l’implémentation des différents ou-
tils, chacun d’entre vous allez devoir toucher à la méthode principale, alors cela augmente
considérablement les risques de bugs.

➩ Manque de polymorphisme
Tous les outils doivent être traités différemment car pas le même type, pas toujours le même
comportement.

2.2. LES INTERFACES EN JAVA 27

• Implémentation avec interface

1 interface Tool {
2 void useTool (); /* Méthode commune à tous les outils */
3 }
4
5 class Pickaxe implements Tool {
6 @Override
7 public void useTool () {
8 System.out.println("Miner un bloc avec une pioche ...");
9 }

10 }
11
12 class Axe implements Tool {
13 @Override
14 public void useTool () {
15 System.out.println("Couper du bois avec une hache ...");
16 }
17 }
18
19 public class MinecraftWithInterface {
20 public static void main(String [] args) {
21 Tool pickaxe = new Pickaxe ();
22 Tool axe = new Axe ();
23
24 useTool(pickaxe);
25 useTool(axe);
26 }
27
28 public static void useTool(Tool tool) {
29 tool.useTool ();
30 }
31 }

Explications

➩ Création de l’interface Tool qui définit le signature de la méthode useTool().
Ainsi toutes les classes qui implémenteront cette interface devront définir le corps de la
méthode useTool().

➩ Ainsi, les objets associés à l’interface Tool peuvent être manipulés de la même manière
avec la méthode useTool() sans vérifier le type.

➩ Extensibilité du code
On rappelle que je voulais ajouter la classe Shovel pour définir le comportement d’une Pelle.
Ainsi on ajoutera :

1 class Shovel implements Tool {
2 @Override
3 public void useTool () {
4 System.out.println("Digging with a shovel ...");
5 }
6 }

➩ Ainsi, même si les développeurs doivent ajouter d’autres outils, puisque chacun est indépen-
dant mais qu’ils implémentent l’interface Tool, il n’y aura pas besoin de changer la méthode
principale useTool(Tool tool).

➩ Le code devient alors bien plus clair.

28 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Exercice

Dans Minecraft, le joueur peut miner différents types de minerais, comme le fer, l’or, ou le dia-
mant. Chaque minerai a des caractéristiques spécifiques, mais ils partagent aussi un comporte-
ment commun : être minés et donner un matériau.

1. Créer l’interface Ore qui définit deux méthodes :

A. mine() Affichera quel minerai le joueur mine
B. getMaterial() Affiche quel matériau on obtient après minage

(ex. ’diamond’, ’Iron Ingot’).
2. Implémenter trois classes IronOre, GoldOre, DiamondOre
3. Créer une classe principale qui utilise ce que vous venez de coder.

2.3) Généricité en Java

2.3.1) Rappels de cours sur la généricité

DÉFINITION (généricité)

La généricité permet de créer des classes, des interfaces et des méthodes capables de fonc-
tionner avec différents types de données tout en garantissant la sécurité des types lors de la
compilation.
Cela évite des cast, donc des conversions et des erreurs de types.

Avantages à utiliser la généricité :

➩ Au lieu de créer des classes et des méthodes distinctes pour différents types, on utilise une
unique version générique unique.

➩ Le erreurs de types sont détectées lors de la compilation.
➩ Le code devient plus clair et lisible.

Exemple, (suite) les outils sur Minecraft
• Un peu de contexte pour comprendre le problème

On a vu précédemment que l’on pouvais définir une interface Tool et l’implémenter pour
différentes classes d’outils, comme Pickaxe, Axe, Shovel. Cependant, si on veut gérer une
collection (liste) d’outils, la généricité peut devenir bien utile.

• Exemple sans généricité
On reprend l’interface Tool et les différentes classes outils créées précédemment.
Création d’une classe ToolBox qui possède un attribut tools de type List, un constructeur, une
méthode pour ajouter un outil à la liste et une autre méthode permettant de parcourir toute la liste
et d’utiliser tous les outils.

1 import java.util.ArrayList;
2 import java.util.List;
3
4 interface Tool {
5 void useTool ();
6 }
7
8 class Pickaxe implements Tool {
9 @Override

2.3. GÉNÉRICITÉ EN JAVA 29

10 public void useTool () {
11 System.out.println("Miner avec une pioche ...");
12 }
13 }
14
15 class Axe implements Tool {
16 @Override
17 public void useTool () {
18 System.out.println("Couper du bois avec une hache ...");
19 }
20 }
21
22 class Shovel implements Tool {
23 @Override
24 public void useTool () {
25 System.out.println("Creuser avec une pelle ...");
26 }
27 }
28
29 class ToolBox {
30 private List tools;
31
32 public ToolBox () {
33 this.tools = new ArrayList ();
34 }
35
36 public void addTool(Object tool) {
37 tools.add(tool);
38 }
39
40 public void useAllTools () {
41 for (Object tool : tools) {
42 if (tool instanceof Tool) {
43 ((Tool) tool). useTool ();
44 }
45 }
46 }
47 }
48
49 public class MinecraftToolBox {
50 public static void main(String [] args) {
51 ToolBox toolBox = new ToolBox ();
52 toolBox.addTool(new Pickaxe ());
53 toolBox.addTool(new Axe ());
54 toolBox.addTool(new Shovel ());
55
56 toolBox.useAllTools (); /* Utilisation des outils */
57 }
58 }

Problèmes qui vont se poser

➩ Lors de l’ajout d’un outil dans la liste, on ne vérifie pas si le type de l’objet que l’on ajoute est
de type Tool, cela pourra provoquer des erreurs lors de l’exécution.

➩ Dans la méthode useAllTools() il faut faire un cast sur chaque élément de la liste d’outils
ce qui alourdit le code et peut provoquer des erreurs si le type d’un des objets n’est pas
correct.

30 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

• Exemple avec généricité

1 import java.util.ArrayList;
2 import java.util.List;
3
4 interface Tool {
5 void useTool ();
6 }
7
8 class Pickaxe implements Tool {
9 @Override

10 public void useTool () {
11 System.out.println("Miner avec une pioche ...");
12 }
13 }
14
15 class Axe implements Tool {
16 @Override
17 public void useTool () {
18 System.out.println("Couper du bois avec une hache ...");
19 }
20 }
21
22 class Shovel implements Tool {
23 @Override
24 public void useTool () {
25 System.out.println("Creuser avec une pelle ...");
26 }
27 }
28
29 class ToolBox <T extends Tool > {
30 private List <T> tools;
31
32 public ToolBox () {
33 this.tools = new ArrayList <>();
34 }
35
36 public void addTool(T tool) {
37 tools.add(tool);
38 }
39
40 public void useAllTools () {
41 for (T tool : tools) {
42 tool.useTool ();
43 }
44 }
45 }
46
47 public class MinecraftToolBox {
48 public static void main(String [] args) {
49 ToolBox <Tool > toolBox = new ToolBox <>();
50
51 toolBox.addTool(new Pickaxe ());
52 toolBox.addTool(new Axe ());
53 toolBox.addTool(new Shovel ());
54
55 toolBox.useAllTools ();
56 }
57 }

2.3. GÉNÉRICITÉ EN JAVA 31

Après exécution...

Miner avec une pioche...
Couper du bois avec une hache...
Creuser avec une pelle...

Avantages à la généricité

➩ La classe ToolBox impose qu’elle n’accepte qye des objets T de type Tool, ainsi tout objet
ne faisant pas partie de la classe Tool provoquera une erreur lors de la compilation.

➩ Puisque ToolBox garantit que les objets T soient de type Tool alors la liste Tools contiendra
obligatoirement des objets de type Tool, donc plus besoin de cast.

➩ Si plus tard on souhaite implémenter d’autres outils (comme Mass, Hoe), la classe ToolBox
pourra les accepter tant qu’ils implémentent la classe Tool, sans pour autant devoir modifier
la classe ToolBox.
=⇒ code plus flexible.

Exercice

Créer une nouvelle boîte d’outils PickaceBox qui devra contenir uniquement des objets qui im-
plémentent Pickaxe.

2.3.2) Les ArrayList, classe générique

DÉFINITION (ArrayList)

ArrayList est une classe de la bibliothèque standard qui permet en fait de stocker des éléments
dans un tableau dynamique.
Du coup, une ArrayList peut s’adapter dynamiquement à la taille des éléments qu’elle contient,
en ajouter, en supprimer sans avoir besoin de redimentionner manuellement le tableau (comme
en C...).

Application : Utiliser les ArrayList avec des types génériques pour créer des collections de types
spécifique en préservant la sécurité de type à la compilation.

2.3.2.1) Exemple simple aux ArrayList

1 import java.util.ArrayList;
2
3 public class ArrayListExample {
4 public static void main(String [] args) {
5 ArrayList <String > list = new ArrayList <>();
6
7 list.add("Apple");
8 list.add("Banana");
9 list.add("Cherry");

10
11 for (String item : list) {
12 System.out.println(item);
13 }
14 }
15 }

32 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

DÉFINITION (classe générique)

Les classes génériques permettent de définir des collection paramétrées par type.

Remarque
En gros, au lieu de définit un liste d’Object qui peut contenir n’importe quel
type, vous pouvez donner le type exact des objets que la liste contiendra,
comme ça on évite les cast inutiles et les erreurs de types.

2.3.2.2) Méthodes associées aux ArrayList

Évidemment, la classe ArrayList permet d’introduire un certain nombre de méthodes qui lui sont
associés. Ici, ce sont les méthodes principales

Ajouter un élément .add()

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T, deux façons d’ajouter un élément :

❏ Ajouter un élément en fin de liste
❏ Ajouter un élément à l’indice i

1 L.add(T element); /* Ajoute en fin de liste */
2 L.add(int i, T element); /* Ajoute à l’indice i */

Accéder aux éléments .get()

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T, alors on peut accéder à l’élément d’indice i :

1 L.get(int i); /* J’accède à le i-ème élément */

Modifier les éléments .set()

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T, alors on peut modifier l’élément d’indice i :

1 L.set(int i, T nouvElem); /* Je modifie le i-ème élément */

Supprimer des éléments .remove()

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T, deux façons de supprimer un élément :

❏ Supprimer un objet T truc souhaité
❏ Supprimer un élément à l’indice i

1 L.remove(T truc); /* Supprime le premier élément correspondant */
2 L.remove(int i); /* Supprime le i-ième élément */

2.3. GÉNÉRICITÉ EN JAVA 33

Liste vide? .isempty(), .contains(), .indexOf()

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T. :

❏ Vérifier si la liste est vide
❏ Vérifier si la liste contient T truc
❏ Retourner l’indice de l’élément T truc si trouvé

1 L.isEmpty(); /* La liste est -elle vide ? */
2 L.contains(T truc); /* La liste contient elle truc ? */
3 L.indexOf(T truc); /* Renvoi l’indice de truc si il existe */

Remarque Si L.indexOf(...) ne trouve pas l’objet dans la liste, alors il renverra -1.

Taille de la liste .size()

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T, alors on peut obtenir la taille de L :

1 L.size();

Itération et parcours .iterator(), .forEach()

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T, alors on peut parcourir un tableau :

1 L.iterator(); /* Retourne un itérateur pour parcourir les éléments */
2 L.forEach(Consumer <? super T> action);
3 /* Applique une action à chaque élément */

Nettoyer une liste .clear()

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T, alors on peut nettoyer (= vider) la liste :

1 L.clear();

2.3.3) L’interface générique Collection<E>

DÉFINITION (L’interface Collection)

Collection<E> esy une interface générique, elle représente un ensemble d’objet (appelés élé-
ments).

Remarque

Puisque la classe ArrayList<E> implémente justement Collection<E> alors
elle possède toute les méthodes de cette dernières.
La signature de certaines des méthodes décrites au dessus appartiennent à
Colection<E> comme add(E elem) par exemple.

34 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Remarque Un type simple ne peut pas être utilisé pour un type générique, on utilise alors
les types Wrapper à la place (Integer au lieu de Int par exemple).

La classe générique ArrayList<E> implémente l’interface générique List<E>.

2.3.4) Les HashSet, une autre collection générique

DÉFINITION (HashSet)

HashSet est une implémentation de l’interface Set<E>. Ce dernier est utilisé pour stocker des
éléments unique.
En gros, il ne permet pas de stocker des doublons.
Pour gérer ses données, HashSet utilise une table de hachage en interne (HashMap).

Caractéristiques principales

• Les éléments d’un HashSet sont uniques.
Si vous souhaitez ajouter un élément déjà présent, ce dernier ne sera pas ajouté

• Les données ne sont pas ordonnées.
• Si on ajoute/supprime un élément, l’ordre peut changer.

Rappel de cours 8
Puisque HashSet implémente Set<E> et hérite de Collection<E> ainsi, elle propose les méthodes
suivantes :

• add(E elem), remove(Object o), clear()
• isEmpty(), contains(Object o)
• et d’autres...

Exemple, Partie spéciale sur Minecraft
• Dans Minecraft, un joueur a un inventaire, mais on veut s’assurer que certains types d’objets

ne peuvent pas être dupliqués. Par exemple, dans une partie spéciale, un joueur ne peut
avoir qu’un seul exemplaire de chaque outil rare (comme une « épée de diamant » , une «
pioche enchantée », etc.).

1 import java.util.HashSet;
2
3 public class MinecraftInventory {
4 public static void main(String [] args) {
5 HashSet <String > inventory = new HashSet <>();
6
7 inventory.add("Épée de diamant");
8 inventory.add("Pioche enchantée");
9 inventory.add("Arc puissant");

10
11 System.out.println("Inventaire : " + inventory);
12
13 boolean ajoutEpee = inventory.add("Épée de diamant");
14 if (! ajoutEpee) {
15 System.out.println("Tu as déjà une Épée de diamant
16 dans l’inventaire !");
17 }
18
19 if (inventory.contains("Pioche enchantée")) {
20 System.out.println("Tu as une Pioche enchantée !");
21 } else {

2.3. GÉNÉRICITÉ EN JAVA 35

22 System.out.println("Tu n’as pas encore de Pioche enchantée.");
23 }
24
25 inventory.remove("Arc puissant");
26 System.out.println("Après suppression , inventaire : " + inventory);
27
28 System.out.println("Nombre d’outils dans l’inventaire : " +
29 inventory.size ());
30 }
31 }

Remarque
On tente d’ajouter (ligne 13) l’item « Épée de diamant » dans inventory, mais
cette dernière est déjà dans l’inventaire alors, la valeur de ajoutEpee sera
fausse.

Inventaire : ["Épée de diamant", "Arc puissant", "Pioche enchantée"]
Tu as déjà une Épée de diamant dans l’inventaire !
Tu as une Pioche enchantée !
Après suppression, inventaire : ["Épée de diamant", "Pioche enchantée"]
Nombre d’outils dans l’inventaire : 2

2.3.5) Zoom sur la boucle « for each »
En Java, la boucle for-each est une boucle améliorée qui est utilisée pour parcourir les éléments d’une
collection ou d’un tableau de manière simple et lisible.
Cette boucle fonctionne avec toute classe qui implémente l’interface Iterable<E> comme ArrayList<E>
et HashSet<E> vus précédemment.

Exemple, liste d’outils

1 import java.util.ArrayList;
2
3 public class ForEachExample {
4 public static void main(String [] args) {
5 /* Création d’une collection */
6 ArrayList <String > tools = new ArrayList <>();
7 tools.add("Épée");
8 tools.add("Pioche");
9 tools.add("Arc");

10
11 /* Parcourir les éléments avec for -each */
12 for (String tool : tools) {
13 System.out.println(tool);
14 }
15 }
16 }

Épée
Pioche
Arc

Structure générale de la boucle for-each

for (Type truc : collection) { ... }

36 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Remarque Une interface peut contenir le corps des méthodes si ces dernières sont décla-
rées avec les mots clé static ou final, mais seront étudiées plus tard.

2.4) Les lambda-expressions

DÉFINITION (lamba-expression)

Les expressions lambda ont été introduites en Java 8, elles permettent de simplifier la création
d’objets pour les interfaces fonctionnelles (interfaces avec une seule méthode abstraite).
Rendant le code plus concis.
Autrement dit, on peut voir une lambda expression comme étant une méthode anonyme utilisée
pour définir une fonction en ligne.

Syntaxe générale des lambdas expressions

(paramètres) -> { corps de la méthode }

Exemple, tri d’une liste
On a une liste de chaine de caractères (String) et on souhaite la trier par ordre alphabétique.

• Sans utiliser d’expression lambda
1 import java.util .*;
2
3 public class LambdaExample {
4 public static void main(String [] args) {
5 List <String > names = Arrays.asList("Steve", "Alex", "Herobrine");
6
7 Collections.sort(names , new Comparator <String >() {
8 @Override
9 public int compare(String a, String b) {

10 return a.compareTo(b);
11 }
12 });
13 System.out.println(names);
14 }
15 }

• En utilisant les expressions lambda
1 import java.util .*;
2
3 public class LambdaExample {
4 public static void main(String [] args) {
5 List <String > names = Arrays.asList("Steve", "Alex", "Herobrine");
6
7 Collections.sort(names , (a, b) → a.compareTo(b));
8 System.out.println(names);
9 }

10 }

[Alex, Herobrine, Steve]

Collections.sort(names, (a, b) -> a.compareTo(b));
On utilise uhne méthode statique de la classe Collections qui trie les éléments d’une liste prenant en
paramètre, la liste à trier, ainsi que la règle de tri.

2.5. 4 INTERFACES FONCTIONNELLES DE BASE 37

Rappel de cours 9
La méthode .compareTo()
Elle fait partie de String et compare de chaine lexicographiquement :

• Si a < b renvoi un nombre négatif.
• Si b < a renvoi un nombre positif.
• Si a = b renvoi 0.

Remarque

Dans Haskell, le système de type est beaucoup plus flexible et intelligent en
ce qui concerne l’inférence des types. Lorsque vous écrivez une lambda (ou
une fonction anonyme), le compilateur peut déduire automatiquement le type
des paramètres à partir du contexte, sans que vous ayez besoin de spécifier
explicitement les types. Cela rend les lambdas en Haskell très concises et le
langage généralement plus flexible.

2.5) 4 interfaces fonctionnelles de base

2.5.1) L’interface Function<T, R>

DÉFINITION (Function<T, R>)

L’interface Function<T, R> fait partie de l’API des fonctions lambda introduites en Java 8. Elle
est utilisée pour représenter une fonction qui prend un argument de type T et renvoie un résultat
de type R.

Signature de l’interface Function

1 @FunctionalInterface
2 public interface Function <T, R> {
3 R apply(T t);
4 }

Explications :

❏ Type générique T et R
➩ Le type T représente le type de l’argument que reçoit la fonction.

On rappel que T doit faire partie des types Wrapper.
➩ Le type R est le type du résultat retourné par la fonction.

❏ Méthode apply(T t)
Méthode principale de l’interface, qui définit le comportement de la fonction.
En gros, quand vous créez une instance de l’interface Function vous devez aussi définir la mé-
thode apply pour spécifier ce que la fonction doit faire avec l’argument T.

Exemple, Création d’un plugin sur Minecraft

• Vous souhaitez créer un plugin Minecraft où on veut vérifier si un joueur a atteint son objectif.

1 import java.util.function.Function;
2
3 public class MinecraftFunctionExample {
4 public static void main(String [] args) {

38 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

5 Function <Player , String > checkGoal = (Player player) → {
6 if (player.getPoints () >= 100) {
7 return player.getName () + " a atteint l’objectif !";
8 } else {
9 return player.getName () + " doit encore travailler

10 pour atteindre l’objectif.";
11 }
12 };
13 Player player1 = new Player("Alex", 120);
14 Player player2 = new Player("Steve", 80);
15
16 System.out.println(checkGoal.apply(player1));
17 System.out.println(checkGoal.apply(player2));
18 }
19 }
20
21 class Player {
22 private String name;
23 private int points;
24
25 public Player(String name , int points) {
26 this.name = name;
27 this.points = points;
28 }
29
30 public String getName () {
31 return name;
32 }
33
34 public int getPoints () {
35 return points;
36 }
37 }

Explications :

• La fonction main
➩ Création de checkGoal

checkGoal est une variable qui permet de vérifier si le joueur a atteint son objectif ou non.
checkGoal est une variable de type Function<Player, String>, c’est à dire que la fonction
prend en argument un objet de type Player et renvoi un argument de type String.

➩ Création de deux objets issus de la classe Player et vérifions si ils ont atteint l’objectif.

Alex a atteint l’objectif !
Steve doit encore travailler pour atteindre l’objectif.

2.5.2) Linterface Predicate<T>

DÉFINITION (Predicate)

L’interfacte Predicate<T> a elle aussi été introduite depuis Java 8. C’est une fonction qui évalue
une condition (= prédicat) sur un objet de type T et retourne un booléen.

2.5. 4 INTERFACES FONCTIONNELLES DE BASE 39

Signature de l’interface Predicate<T>

1 @FunctionalInterface
2 public interface Predicate <T> {
3 boolean test(T t);
4 }

La fonction test reçoit un argument de type T et renvoi un booléen.
Vous le savez retourne true si vrai, false sinon.

En plus de la méthode test, l’interface fournit d’autre méthodes pour composer plusieurs prédicats :

❏ and(Predicate<? super T> other)
Combine deux prédicats avec la relation logique ET.

❏ or(Predicate<? super T> other)
Combine deux prédicats avec la relation logique OU (inclusid).

❏ negate()
Retourne un prédicat qui est en fait l’inverse logique du prédicat courant.

❏ ...

Exemple (1)

1 import java.util.function.Predicate;
2
3 public class SimplePredicateExample {
4 public static void main(String [] args) {
5 Predicate <Integer > isEven = n → n % 2 == 0;
6
7 System.out.println(isEven.test (4));
8 System.out.println(isEven.test (7));
9 }

10 }

true
false

Exemple (2), combinaison de prédicats

1 import java.util.function.Predicate;
2
3 public class SimplePredicateComposition {
4 public static void main(String [] args) {
5 Predicate <Integer > isEven = n → n % 2 == 0;
6 Predicate <Integer > greaterThanFive = n → n > 5;
7
8 Predicate <Integer > evenAndGreaterFive = isEven.and(greaterThanFive);
9

10 System.out.println(evenAndGreaterFive.test (8));
11 System.out.println(evenAndGreaterFive.test (4));
12 System.out.println(evenAndGreaterFive.test (7));
13 }
14 }

Ici on a créé deux prédicats, un qui vérifie si le nombre est pair, un autre si il est plus grand que 5.
Ensuite, on a créer un prédicat « fusion » qui utilise les deux créés précédemment.

40 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

true
false
false

2.5.3) L’interface Consumer<T>

DÉFINITION (Consumer)

Introduite avec Java 8,
L’interface Consumer<T> et elle est en fait représentée par une opération qui prend un argument
de type T et ne retourne rien.

Remarque Consumer<T> est idéale pour effectuer des opérations comme afficher des don-
nées, modifier un objet, effectuer une opération sans retourner de valeur.

Signature de l’interface Consumer<T>

1 @FunctionalInterface
2 public interface Consumer <T> {
3 void accept(T t);
4 }

La fonction accept reçoit un argument de type T et ne renvoi rien.

En plus de la méthode accept(T t), Consumer fournit une méthode par défaut qui permet de com-
biner plusieurs Consumer :

andThen(Consumer<? super T> after>

Exemple (1)

1 import java.util.Arrays;
2 import java.util.List;
3 import java.util.function.Consumer;
4
5 public class ConsumerExample {
6 public static void main(String [] args) {
7 Consumer <String > print = s → System.out.println(s);
8 List <String > names = Arrays.asList("Steve", "Alex", "Notch");
9

10 names.forEach(print);
11 }
12 }

Dans le main,

• Création d’un Consumer<String> qui permet d’afficher une donnée.
• Création d’une List de trois éléments de type String
• Parcours de la liste en effectuant le Consumer sur chaque élément

Steve
Alex
Notch

2.5. 4 INTERFACES FONCTIONNELLES DE BASE 41

Exemple (2), combinaison de deux Consumer

1 import java.util.function.Consumer;
2
3 public class ConsumerChainingExample {
4 public static void main(String [] args) {
5 Consumer <String > print = s → System.out.println("Valeur : " + s);
6
7 Consumer <String > printLength = s → System.out.println("Longueur : " +
8 s.length ());
9

10 Consumer <String > combined = print.andThen(printLength);
11
12 combined.accept("Minecraft");
13 }
14 }

Deux Consumer :
• Un pour afficher une valeur
• Un pour afficher la taille de la chaîne de caractère entrée en paramètre

Ainsi, on combine les deux Consumer, le troisième vas donc afficher la valeur de la chaine de caractère
puis sa longueur.

Valeur : Minecraft
Longueur : 9

2.5.4) L’interface Supplier<R>

DÉFINITION (Supplier)

L’interface Supplier<R> a été introduite en Java 8, elle représente un « fournisseur de résultat »,
en gros elle ne prend aucun argument mais renvoi une valeur de type R.

Signature de l’interface Supplier<R>

1 @FunctionalInterface
2 public interface Supplier <R> {
3 R get ();
4 }

La fonction ne prend aucun argument mais renvoi une valeur de type R.

Exemple (1)
1 import java.util.function.Supplier;
2
3 public class SimpleSupplierExample {
4 public static void main(String [] args) {
5 Supplier <String > messageSupplier = () → "Bienvenue dans Minecraft!";
6
7 System.out.println(messageSupplier.get ());
8 }
9 }

Bienvenue dans Minecraft !

42 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Exemple (2), un peu plus compliqué
1 import java.util.ArrayList;
2 import java.util.List;
3 import java.util.function.Supplier;
4
5 public class ListSupplierExample {
6 public static void main(String [] args) {
7 Supplier <List <String >> listSupplier = ArrayList ::new;
8
9 List <String > newList = listSupplier.get ();

10 newList.add("Minecraft");
11 newList.add("Java");
12
13 System.out.println("Liste : " + newList);
14 }
15 }

Liste : [Minecraft, Java]

2.6) La classe Optional

Rappel de cours 10
En Haskell, on pouvais représenter le fait qu’une fonction retourne un résultat ou pas avec le type
Maybe, la clase Optional en java permet de faire la même chose.

DÉFINITION (Optional)

Introduite avec Java 8,
La classe Optional est utilisée pour représenter un résultat absent ou présent.
Permettant de mieux gérer les cas d’une valeur null et de manipulation de null.
Comme les NullPointerException.

Définition de la classe Optional

1 public final class Optional <T> {
2 private Optional () { /* private constructor */ }
3 }

Optional est une classe générique, ce qui signifie qu’elle peut contenir n’importe quel type d’objet. Elle
contient une valeur de type T, ou peut être vide (sans valeur).

2.6.1) Construction d’un Optional

3 façons vues en cours
❏ Contruction d’un Optional représentant l’absence de données (Nothing en Haskell) :

Optional.empty()
❏ Construire un Optional qui encapsule une donnée :

Optional.of(donnee)
❏ Contruire un Optional vide ou qui encapsule une donnée à partir d’une référence qui peut être

null :
Optional.ofNullable(reference)

2.6. LA CLASSE OPTIONAL 43

2.6.2) Récupérer la valeur d’un Optional

Il est possible de récupérer une donnée encapsulée dans un Optional en utilisant la méthode get().
Mais, si l’Optional est vide, get renverra une erreur.
Ainsi, on introduit la méthode orElse(defaultValue) qui s’applique à tout les Optional et renvoie la
donnée encapsulée dans le Optional si il n’est pas vide. Sinon renverra defaultValue.

Exemple, récupérer la donnée d’un Optional

1 import java.util.Optional;
2
3 public class SimpleOptionalExample {
4 public static void main(String [] args) {
5 Optional <String > playerName = Optional.of("Steve");
6 String name = playerName.orElse("Joueur inconnu");
7 System.out.println(name);
8 Optional <String > emptyName = Optional.empty ();
9 String defaultName = emptyName.orElse("Joueur inconnu");

10 System.out.println(defaultName);
11 }
12 }

Steve
Joueur inconnu

2.6.3) Déterminer si un Optional est vide
Pour savoir si un Optional est vide ou non, deux méthodes possibles isEmpty() et isPresent().

Exemple

1 import java.util.Optional;
2
3 public class OptionalEmptyCheck {
4 public static void main(String [] args) {
5 Optional <String > playerName = Optional.of("Steve");
6 if (playerName.isEmpty ()) {
7 System.out.println("L’Optional est vide.");
8 } else {
9 System.out.println("L’Optional contient une valeur : "

10 + playerName.get ());
11 }
12 Optional <String > emptyName = Optional.empty ();
13 if (! emptyName.isPresent ()) {
14 System.out.println("L’Optional est vide.");
15 } else {
16 System.out.println("L’Optional contient une valeur : "
17 + emptyName.get ());
18 }
19 }
20 }

L’Optional contient une valeur : Steve
L’Optional est vide.

44 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

2.6.4) Utilisation de map et filter sur un Optinal

2.6.4.1) Optional est un foncteur : Méthode map

Rappel de cours 11
En Haskell Maybe est un foncteur, on pouvait alors utiliser fmap.

1 Functor f => (a -> b) -> f a -> f b

En Java, Optional présente les mêmes propriétés avec la méthode map.

1 Optional <A> :
2 Optional map(Function <A, B>)

Rappel de cours 12
On se souvient que map permet de transformer la valeur dans un Optional si elle est présente.

Exemple

1 import java.util.Optional;
2
3 public class OptionalMapExample {
4 public static void main(String [] args) {
5 Optional <String > playerName = Optional.of("Steve");
6
7 Optional <String > uppercaseName = playerName.map(String :: toUpperCase);
8
9 uppercaseName.ifPresent(System.out:: println);

10
11 Optional <String > emptyName = Optional.empty ();
12
13 Optional <String > result = emptyName.map(String :: toUpperCase);
14 result.ifPresentOrElse(
15 System.out::println ,
16 () → System.out.println("Aucun nom disponible")
17);
18 }
19 }

STEVE
Aucun nom disponible

2.6.4.2) Filter sur un Optional

La méthode filter permet d’obtenir un nouvel Optional à partir d’un Optional en suivant le fonction-
nement suivant :

➩ Si Optional vide alors on obtient Optional vide
➩ Si la donnée de l’Optional ne respecte pas le prédicat passé en paramètre de filter, on obtient

un Optional vide
➩ Si la donnée de l’Optional respecte le prédicat passé en paramètre de filter, on obtient le

même Optional qu’au début

2.6. LA CLASSE OPTIONAL 45

Exemple

1 import java.util.Optional;
2
3 public class OptionalFilterExample {
4 public static void main(String [] args) {
5 Optional <String > playerName = Optional.of("Steve");
6
7 Optional <String > longName = playerName.filter(name → name.length () > 4);
8
9 longName.ifPresent(System.out:: println);

10
11 Optional <String > shortName = playerName.filter(name → name.length () > 5);
12
13 shortName.ifPresentOrElse(
14 System.out::println ,
15 () → System.out.println("Nom trop court")
16);
17 }
18 }

Steve
Nom trop court

2.6.5) Utiliser un Optional pour éviter de multiples tests à null

Exemple

1 public class Player {
2 private String name;
3
4 public Player(String name) {
5 this.name = name;
6 }
7 public String getName () {
8 return name;
9 }

10 }
11
12 public class NullCheckExample {
13 public static void main(String [] args) {
14 Player player = null;
15
16 if (player != null) {
17 String name = player.getName ();
18 if (name != null) {
19 System.out.println(name.toUpperCase ());
20 } else {
21 System.out.println("Nom du joueur non disponible.");
22 }
23 } else {
24 System.out.println("Aucun joueur.");
25 }
26 }
27 }

Ici, sans utiliser d’Optional, on est obliger de faire des tests à répétition afin de savoir si le joueur
existe, si il a un nom, ...

46 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Cela rend le code bien plus lourd et difficile à maintenir.
La solution est donc d’utiliser Optional.

1 import java.util.Optional;
2
3 public class Player {
4 private String name;
5
6 public Player(String name) {
7 this.name = name;
8 }
9

10 public Optional <String > getName () {
11 return Optional.ofNullable(name); /* Retourne un Optional */
12 }
13 }
14
15 public class OptionalExample {
16 public static void main(String [] args) {
17 Player player = new Player("Steve");
18
19 String result = player.getName ()
20 .map(String :: toUpperCase)
21 .orElse("Nom du joueur non disponible");
22 System.out.println(result);
23
24 Player unnamedPlayer = new Player(null);
25
26 String result2 = unnamedPlayer.getName ()
27 .map(String :: toUpperCase)
28 .orElse("Nom du joueur non disponible");
29 System.out.println(result2);
30
31 Optional <Player > noPlayer = Optional.empty ();
32
33 String result3 = noPlayer.flatMap(Player :: getName)
34 .map(String :: toUpperCase)
35 .orElse("Aucun joueur.");
36 System.out.println(result3);
37 }
38 }

Explications
On souhaite vérifier si un joueur existe, et si il possède un nom, alors on l’affichera en majuscule.

• CAS 1
player est un joueur qui s’appelle Steve
player.getName() renverra alors Optional("Steve") ainsi lorsque l’on applique map dessus
avec toUpperCase on vas alors obtenir Optional("STEVE").

• CAS 2
unnamedPlayer est un joueur sans nom
Alors unnamedPlayer.getName() renvoie Optionnal(null) le map ne peux donc s’effectuer, on
renvoi un message d’erreur.

• CAS 3
noPlayer est un Optional vide
Ici flatMap() ne s’exécute pas et renvoi dirrectement Aucun joueur

2.6. LA CLASSE OPTIONAL 47

STEVE
Nom du joueur non disponible
Aucun joueur

Remarque On utilise flatMap() dans le cas n°3 car player est déjà un Optional.

2.6.6) Modifier une donnée encapsulée dans un Optional

Rappel de cours 13
Contrairement aux langages de programmation fonctionnels comme Haskell où les données sont
des objets immuables. Il peut arriver que l’on souhaite modifier une donnée encapsulée dans un
Optional.

Remarque
Une donnée encapsulée dans un Optional n’est pas directement modifiable.
Pour se faire, il faudra appliquer une méthode sur l’Optional visé et réencap-
suler le résultat dans un nouvel Optional.

2.6.6.1) Méthode 1 - Utiliser ifPresent

Si l’Optional encapsule une donnée immuable, il est possible de modifier cet objet par un accès expli-
cite via isPresent().
Exemple

1 import java.util.Optional;
2
3 public class OptionalModifyObjectExample {
4 public static void main(String [] args) {
5 Optional <Player > optionalPlayer = Optional.of(new Player("Steve"));
6 /* Optinal A */
7
8 optionalPlayer.ifPresent(player → player.setName("Alex"));
9 /* Optional B */

10
11 optionalPlayer.ifPresent(player → System.out.println(player.getName ()));
12 /* Optional C */
13 }
14 }
15
16 class Player {
17 private String name;
18 public Player(String name) {
19 this.name = name;
20 }
21
22 public String getName () {
23 return name;
24 }
25
26 public void setName(String name) {
27 this.name = name;
28 }
29 }

48 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Explications
Dans le main, on encapsule un objet Player. On souhaite modifier "Steve" en "Alex" alors on utilise la
méthode isPresent().
En gros, si il y a une donnée (ici un joueur) dans l’Optional alors je change son nom en "Alex", enfin
si le joueur est toujours présent j’affiche son nom. (vérification)

Alex

2.6.6.2) Méthode 2 - Utiliser map() pas vue en cours

Pour modifier une donnée encapsulée dans un Optional on peut aussi utiliser map. Ainsi en utilisant
map on vas alors créer un nouvel Optional qui contiendra la valeur modifiée de l’ancien si elle existe.
Dans le cas contraire, on retourne alors un Optional vide.

Exemple

1 import java.util.Optional;
2
3 public class OptionalModifyExample {
4 public static void main(String [] args) {
5 Optional <String > playerName = Optional.of("Steve");
6 Optional <String > modifiedName = playerName.map(name → name + " le grand");
7 System.out.println(modifiedName.orElse("Aucun joueur modifier."));
8
9 Optional <String > emptyName = Optional.empty ();

10 Optional <String > result = emptyName.map(name → name + " le grand");
11 System.out.println(result.orElse("Aucun joueur à modifier."));
12 }
13 }

Steve le grand
Aucun joueur à modifier.

2.6.7) Optional est une monade

Rappel de cours 14
Signature de type de l’opérateur >>=

1 (>>=) :: Monad m => m a -> (a -> m b) -> m b

Avec map on aurait eu

1 maybe a -> (a -> maybe b) -> maybe (maybe b)

Pour Optional c’est flatMap qui joue le rôle de >>=.
Typage simplifié

1 Optional <T> :
2 Optional <U> flatMap(Function <T, Optional <U>> mapper)

2.7. GESTION DES FLUX 49

Typage réel

1 Optional <T> :
2 Optional <U> flatmap(Function < ? super T, ? extends Optional < ? extends U>>)

2.7) Gestion des Flux

2.7.1) Généralités sur les flux

Rappel de cours 15
En Haskell on a vu que l’on pouvait traiter des masses de données d’un type précis grâce aux listes.
En Java c’est aussi possible grâce aux flux Stream.

DÉFINITION (flux)

Les flux (Stream) permettent de traiter des données de manières séquentielle ou parallèle.
En général on les utilise pour lire ou écrire des données, faire des transformations, ou appliquer
des calculs sur des collections.

Remarque Tout comme le type list est paramétré par un type, le type Stream est en fait
un type paramétré : Stream<T>.

Pourquoi Stream<T> et pas List<E>?
❏ Assurer la rétro-compatibilté

DÉFINITION (rétro-compatibilité)

La rétro-compatibilité (ou compatibilité ascendante) désigne la capacité d’un système,
d’un logiciel ou d’un matériel plus récent à fonctionner avec des versions antérieures.

❏ Le type List n’est pas conçu pour l’évaluation paresseuse
DÉFINITION (évaluation paresseuse)

L’évaluation paresseuse en Java consiste à ne pas évaluer une expression ou exécuter
un calcul tant que son résultat n’est pas réellement nécessaire. Cela permet d’optimiser les
performances en évitant des calculs inutiles.

Exemple
L’utilisation des opérateurs logiques && et ||, où Java évalue uniquement ce qui est nécessaire :

➩ Avec && : Si la première condition est false, la seconde n’est pas évaluée, car le résultat
sera forcément false.

➩ Avec || : Si la première condition est true, la seconde n’est pas évaluée, car le résultat sera
forcément true.

2.7.2) Création de flux
Puisque Stream<T> est une interface et pas une classe, alorx il n’y a donc pas de constructeur.
Voici quelques méthodes pour créer un flux :

❏ La méthode stream() de l’interface Collection.
❏ La méthode stream(T[] tableau) de la classe Arrays pour les tableaux.

50 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

❏ La méthode d’instance of() de l’inetrface Stream pour un tableau ou un ensemble fini connu
d’éléments.

❏ La méthode empty() de Stream qui créer un flux vide.

Exemple du cours
1 import java.util.Arrays;
2 import java.util.List;
3 import java.util.stream.Stream;
4
5 public class Main1 {
6 public static void main(String [] args) {
7 List <String > mots = List.of("Bonjour", "tout", "le", "monde");
8
9 Stream <String > fluxMots = mots.stream ();

10
11 Stream <String > fluxMots2 = Stream.of("Bonjour", "tout", "le", "monde");
12
13 String [] tableau = {"Bonjour", "tout", "le", "monde"};
14 Stream <String > fluxMots3 = Arrays.stream(tableau);
15
16 Stream <String > fluxVide = Stream.empty ();
17 }
18 }

Remarque

Il existe d’autres nombreuses classes qui permettent de créer des flux.

❏ stream() de la classe Optional (flux vide, ou à 1 élément suivant le
contenu de l’Optional)

❏ lines(Path p) de la classe java.nio.file.Files (flux des lignes d’un
fichier)

❏ list(Path dir) de la classe java.nio.file.Files (flux des fichier d’un
dossier)

Un flux est destiné à être utilisé pour produire une autre donnée, ou un effet de bord, grâce à une
méthode dite « terminale ».
Ainsi, pour le contenu d’une flux, on peut utiliser la méthode suivante :

1 void forEach(Consumer < ? Super T> traitement)

Exemple, afficher les éléments contenus dans un flux
1 import java.util.List;
2 import java.util.stream.Stream;
3
4 public class Main2 {
5 public static void main(String [] args) {
6 List <String > mots = List.of("Bonjour", "tout", "le", "monde");
7 Stream <String > fluxMots = mots.stream ();
8 fluxMots.forEach(mot → System.out.println(mot));
9 }

10 }

Bonjour
tout
le
monde

2.7. GESTION DES FLUX 51

2.7.3) Un flux est un foncteur

Remarque Comme les listes en Haskell, les flux Java sont des foncteurs, ainsi on y re-
trouve la méthode map.

1 Stream <T>
2 <R> Stream <R> map(Function <? super T, extends R> mapper)

ou dans un premier temps...
1 Stream <T>
2 <R> Stream <R> map(Function <T,R> mapper)

Exemple
1 import java.util.List;
2 import java.util.stream.Stream;
3
4 public class Main1 {
5 public static void main(String [] args) {
6 List <String > mots = List.of("Bonjour", "tout", "le", "monde");
7 Stream <String > fluxMots = mots.stream ();
8 mots.stream ()
9 .map(mot → mot.length ())

10 .forEach(lg → System.out.println(lg));
11 System.out.println("-------------");
12 mots.stream ()
13 .map(mot → mot.length ())
14 .map(nb → 2 * nb)
15 .forEach(lg → System.out.println(lg));
16 System.out.println("-------------");
17 mots.stream ()
18 .map(mot → mot.length ())
19 .filter(lg → lg >= 5)
20 .map(nb → 2 * nb)
21 .forEach(lg → System.out.println(lg));
22 }
23 }

Explications

• On affiche la longueur de chaque mot
• On récupère la longueur de chaque mot et on la multiplie par 2 puis on l’affiche
• On récupère la longueur de chaque mot, on regarde si elle est supérieure ou égale à 5 si c’est le

cas on la garde, on la multiplie par 2 puis on l’affiche

7
4
2
5
––––––-
14
8
4
10
––––––-
14
10

52 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Remarque

Dans l’exemple ci-dessus, on a alligné les points, ce n’est pas obligatoire mais
c’est une convention qui est à respecter.
Vous avez remarqué que l’on a utilisé filter sur les flux

1 Stream <T>
2 Stream <T> filter(Predicate <? super T> predicate)

Exemple

1 import java.util.Arrays;
2 import java.util.stream.IntStream;
3 import java.util.stream.Stream;
4
5 public class Main1 {
6 public static void main(String [] args) {
7 int[] tab = {2, 4, 1, 3, 9, 10, 6,7};
8
9 Arrays.stream(tab) // génère un IntStream

10 .filter(n → n % 2 == 0)
11 .filter(x → x+1)
12 .forEach(nb → System.out.println(nb));
13 }
14 }

3
5
11
7

Remarque

On remarque ainsi que map et filterrenvoient à chaque fois un nouveau flux.
Il est donc possible ,de chaîner les traitement sans écrire de boucles, ce qui
rend l’écriture du code bien plus lisible.
De plus imaginons que dans notre exemple du dessus si la liste ne contenait
que des nombres impair alors, l’évaluation paresseuse évite d’exécuter le se-
cond filter sur un flux vide.

2.7.4) Propriétés générales sur les flux en Java

❏ Un flux à usage unique
En gros après avoir utilisé un flux pour un traitement, si on veut on faire un autre, il faut donc
recréer un flux

❏ Un flux est évalué paresseusement (notion expliquée au dessus)
❏ Il existe d’autre classes de flux plus efficaces pour certains types simples DoubleStream, IntStream

et LongStream.

Remarque

• La méthode stream de Arrays crée un flux de types simples si le tableau
passé en paramètre contient des valeurs de type simple.

• Attention : sur ces classes de flux spécifiques, le map renvoie aussi un
flux du même type simple

2.7. GESTION DES FLUX 53

2.7.5) Analogie avec les listes de Haskell

• La méthode Optional<T> findFirst() permet de récupérer le premier élément d’un flux (si
il n’est pas vide).
Méthode head en Haskell

• La méthode Stream<T> limit(long n) permer de garder les n-premiers éléments d’un flux
Méthode take en Haskell

• La méthode Stream<T> skip(long n) permet de sauter les n premier élément d’un flux
Méthode drop en Haskell

• La méthode Stream<T> takeWhile(Predicate<? super T> predicate) permet de garder les
premiers éléments du flux tant qu’ils vérifient le prédicat.
takeWhile en Haskell

• La méthode Stream<T> dropWhile(Predicate<? super T> predicate) permet de jeter les pre-
miers éléments du flux tant qu’ils vérifient le prédicat.
dropWhile en Haskell

Remarque Toutes ces méthodes sauf findFirst() renvoient des flux, on peut alors les
chaîner pour faire différents traitements.

Exemple du cours

1 import java.util.List;
2 import java.util.Optional;
3
4 public class Main4 {
5 public static void main(String [] args) {
6 List <String > mots = List.of("Bonjour", "tout", "le", "monde");
7 System.out.println("-------------");
8 long nbElements = mots.stream ()
9 .filter(mot → mot.contains("o"))

10 .count ();
11 System.out.println(nbElements);
12
13 System.out.println("-------------");
14 boolean tousO = mots.stream ()
15 .allMatch(mot →mot.contains("o"));
16 System.out.println("contiennent tous un o : " + tousO);
17
18 System.out.println("-------------");
19 boolean unO = mots.stream ()
20 .anyMatch(mot →mot.contains("o"));
21 System.out.println("au moins 1 mot contient un o : " + unO);
22
23 System.out.println("-------------");
24 boolean zeroO = mots.stream ()
25 .noneMatch(mot →mot.contains("o"));
26 System.out.println("aucun mot ne contient un o : " + zeroO);
27
28 Optional <String > max = mots.stream ()
29 .max((s1 ,s2) → s1.compareToIgnoreCase(s2));
30 System.out.println(max.get ());
31 }
32 }

54 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

––––––-
3
––––––-
contiennent tous un o : false
––––––-
au moins 1 mot contient un o : true
––––––-
aucun mot ne contient un o : false
tout

2.7.6) Méthodes terminales
Jusqu’à maintenant la seule méthode terminale que l’on connaissait c’est forEach, mais il y en a
d’autre.

Remarque
Une méthode terminale est une méthode qui ne renvoie pas un flux.
Son opposé, la méthode non-terminale elle renvoie un flux, voir les méthodes
de la partie précédante.

• long count() renvoi le nombre d’élément d’un flux
• boolean allMatch(Predicate<? super T> predicate) tout les éléments d’un flux vérifient le

prédicat?
• boolean anyMatch(Predicate<? super T> predicate) au moins un élément du flux vérifit le

prédicat?
• boolean noneMatch(Predicate<? super T> predicate) Aucuns éléments du flux ne vérifient le

prédicat?
• Optional<T> max(Comparator<? super T> comparator) quel est le plus grand élément du flux?
• Optional<T> min(Comparator<? super T> comparator) quel est le plus petit élément du flux?

Exemple du cours

1 import java.util.List;
2 import java.util.Optional;
3
4 public class Main4 {
5 public static void main(String [] args) {
6 List <String > mots = List.of("Bonjour", "tout", "le", "monde");
7 System.out.println("-------------");
8 long nbElements = mots.stream ()
9 .filter(mot → mot.contains("o"))

10 .count ();
11 System.out.println(nbElements);
12
13 System.out.println("-------------");
14 boolean tousO = mots.stream ()
15 .allMatch(mot →mot.contains("o"));
16 System.out.println("contiennent tous un o : " + tousO);
17
18 System.out.println("-------------");
19 boolean unO = mots.stream ()
20 .anyMatch(mot →mot.contains("o"));
21 System.out.println("au moins 1 mot contient un o : " + unO);
22
23 System.out.println("-------------");

2.7. GESTION DES FLUX 55

24 boolean zeroO = mots.stream ()
25 .noneMatch(mot →mot.contains("o"));
26 System.out.println("aucun mot ne contient un o : " + zeroO);
27
28 Optional <String > max = mots.stream ()
29 .max((s1 ,s2) → s1.compareToIgnoreCase(s2));
30 System.out.println(max.get ());
31 }
32 }

Il y a aussi des méthodes terminales qui permettent de stocker les éléments d’un flux dans un tableau
ou dans une liste immuable.

• Object[] toArray() stocker les éléments du flux dans un tableau de type Object.
• <A> A[] to Array(IntFunction<A[]> createurTableau) créer un tableau de type A à n cases.

Il faut fournir un expression lambda pour déterminer n.
• List[T] toList() stocker les éléments d’un flux dans une liste immuable.

Exemple

1 import java.util .*;
2 import java.util.stream .*;
3
4 public class ExempleStream {
5 public static void main(String [] args) {
6 /* Exemple 1 : Object [] toArray () */
7 Stream <String > flux1 = Stream.of("A", "B", "C");
8 Object [] tableau1 = flux1.toArray ();
9 System.out.println("Exemple 1 : " + Arrays.toString(tableau1));

10
11 /* Exemple 2 : <A> A[] toArray(IntFunction <A[]> createurTableau) */
12 Stream <Integer > flux2 = Stream.of(1, 2, 3);
13 Integer [] tableau2 = flux2.toArray(Integer []:: new);
14 System.out.println("Exemple 2 : " + Arrays.toString(tableau2));
15
16 /* Exemple 3 : List <T> toList () */
17 Stream <String > flux3 = Stream.of("X", "Y", "Z");
18 List <String > liste = flux3.toList ();
19 System.out.println("Exemple 3 : " + liste);
20
21 /* Test immuabilité de la liste */
22 liste.add("W");
23 }
24 }

Exemple 1 : [A, B, C]
Exemple 2 : [1, 2, 3]
Exemple 3 : [X, Y, Z]
UnsupportedOperationException

2.7.7) Flux infinis et évaluation paresseuse

Rappel de cours 16
En Haskell, on peut définir des listes infinies grâce à l’évaluation paresseuse :

• [0..] liste des entiers naturels

56 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

• [0, 2, ..] liste des pairs

On peut faire la même chose avec les flux en Java.

2.7.7.1) La méthode iterate

La méthode d’interface iterate(T seed, UnaryOperator<T> f) permet de générer un flux infini :
• seed, est la première valeur

• f la fonction qui détermine à partir de seed la valeur suivante

Remarque Puisque l’évaluation est paresseuse, lors de la création d’un flux infini, seuls
les éléments utilisé au moment de la méthode terminale seront calculés.

Exemple du cours

1 import java.util.stream.Stream;
2
3 public class Main5ter {
4 public static void main(String [] args) {
5 Stream.iterate(0, n→ n + 2)
6 .map(n → n * n)
7 .takeWhile(n → n <= 5000)
8 .forEach(n → System.out.println(n));
9 }

10 }

0
4
16 ...

2.7.8) Tris sur les fulx avec la méthode sorted()

Remarque La méthode .sort() sans paramètre utilise en fait la méthode compareTo du
type de données du flux.

Exemple du cours

1 import java.util.List;
2
3 public class Main7 {
4 public static void main(String [] args) {
5 List <String > mots = List.of("Bonjour", "tout", "le", "monde");
6 mots.stream ()
7 .sorted ()
8 .forEach(m → System.out.println(m));
9 }

10 }

Bonjour
le
monde
tout

Ici le tri se fait dans l’ordre lexicographique.

	Bases du langage Haskell
	Paradigme impératif, et rappels
	Paradigme fonctionnel
	Langage fonctionnel - Haskell
	Opérations de base et inférence de type
	Écrire des fonctions sur le terminal de commandes
	Test en Haskell
	Définition de fonctions par filtrage
	Un peu de récursivité
	Les listes en Haskell
	Traitement récursif sur les listes
	Fonction d'ordre supérieur
	Forme curryfiée
	Pliage de liste, foldl et foldl1
	Le type maybe
	Une variante de map, le fmap
	Les monades
	L'opérateur >>=

	Les aspects fonctionnels de Java
	Rétrospective sur l'héritage en Java
	Les interfaces en Java
	Généricité en Java
	Rappels de cours sur la généricité
	Les ArrayList, classe générique
	L'interface générique Collection<E>
	Les HashSet, une autre collection générique
	Zoom sur la boucle << for each >>

	Les lambda-expressions
	4 interfaces fonctionnelles de base
	L'interface Function<T, R>
	Linterface Predicate<T>
	L'interface Consumer<T>
	L'interface Supplier<R>

	La classe Optional
	Construction d'un Optional
	Récupérer la valeur d'un Optional
	Déterminer si un Optional est vide
	Utilisation de map et filter sur un Optinal
	Utiliser un Optional pour éviter de multiples tests à null
	Modifier une donnée encapsulée dans un Optional
	Optional est une monade

	Gestion des Flux
	Généralités sur les flux
	Création de flux
	Un flux est un foncteur
	Propriétés générales sur les flux en Java
	Analogie avec les listes de Haskell
	Méthodes terminales
	Flux infinis et évaluation paresseuse
	Tris sur les fulx avec la méthode sorted()

