JAVA FONCTIONNEL

LES COURS DU MODULE « JAVA FONCTIONNEL » DU SEMESTRE 3

KILLIAN REINE

, Licence 2
orientation Informatique

2024-2025

TABLE DES MATIERES

1

Bases du langage Haskell 4
1.1 Paradigme impératif, etrappels 4
1.2 Paradigme fonctionnel 5
1.3 Langage fonctionnel - Haskell 5
1.3.1 Opérations de base et inféerencedetype 5
1.3.2 Ecrire des fonctions sur le terminal de commandes 7
1.8.3 TestenHaskell 9
1.3.4 Définition de fonctions parfiltrage oo L 9
1.3.5 Unpeuderécursivité e 11
1.3.6 LeslistesenHaskell 11
1.3.7 Traitementrécursifsurleslistes 12
1.3.8 Fonction d’ordre supérieur. e 15
1.3.9 Formecurryfiée 17
1.3.10 Pliage de liste, foldl et foldll. it ittt it e 18
1.3.11 Letypemaybe e e e 19
1.3.12 Une variante demap, le fmap 20
1.3.13 Lesmonades 21
1.3.14 Lopérateur >>= 21
Les aspects fonctionnels de Java 23
2.1 Rétrospective sur 'héritageendava, 23
2.2 Lesinterfacesendava 25
2.3 Généricitéendava e 28
2.3.1 Rappelsdecourssurlagénéricité 28
2.3.2 Les Arraylist,classe générique 31
2.3.3 Linterface générique Collection<E> 33
2.3.4 Les HashSet, une autre collection générique, 34
2.3.5 Zoomsurlaboucle «foreach» 35
2.4 Leslambda-expressions e e e e 36
2.5 4interfaces fonctionnellesdebase o o 37
2.5.1 Linterface Function<T, R> o it i i i e e e e e e 37
2.5.2 Linterface Predicate<T> i i e e 38
2.5.3 Linterface Consumer<T> i i it e e e e e e 40
2.5.4 Linterface Supplier<R> e 41
2.6 Laclasse Optional i i e e e 42
2.6.1 Construction d’'un Optional ittt e e e 42
2.6.2 Reécupérerlavaleur d’'un Optional 43

TABLE DES MATIERES 3

2.7

2.6.3 Déterminer siun Optional estvide 43
2.6.4 Utilisation de map et filter surun Optinal 44
2.6.5 Utiliser un Optional pour éviter de multiplestests anull 45
2.6.6 Modifier une donnée encapsulée dans un Optional 47
2.6.7 Optionalestunemonade 48
Gestiondes Flux o e 49
271 Généraliteéssurlesflux. 49
2.7.2 Créationdeflux 49
2.7.3 Unfluxestunfoncteur 51
2.7.4 Propriétés généralessurlesfluxendava 52
2.7.5 Analogie avecleslistesdeHaskell 53
2.7.6 Méthodesterminales 54
2.7.7 Fluxinfinis et évaluation paresseuse 55
2.7.8 Tris sur les fulx avec la méthode sorted() 56

PARTIE 1

BASES DU LANGAGE HASKELL

1.1) Paradigme impératif, et rappels

Rappel de cours 1

> Un langage impératif est un type de langage de programmation ou un programme est es-
sentiellement une liste d’instructions qui décrivent pas a pas les actions a réaliser par
I'ordinateur.

Une instruction est un ordre donné a l'ordinateur.

Une variable permet de stocker une valeur.

Laffectation consiste a associer une information a une variable.

Létat d’'un programme désigne I'ensemble des valeurs des variables et structures de données
a un moment donné dans I'exécution du programme.

Une instruction permet de passer d’'un état e; a un état es. Il peut arriver que celle ci ne
change pas I'état (e; = e3), C’est le cas lorsqu’on affiche la valeur d’'une variable a I'écran. On
appelle ceci des effets de bord.

> La trace d’exécution désigne la succession des états durant I'exécution du programme.

YYVYY

Exemple
Vous connaissez déja pas mal de langages impératifs : Python, Processing, Shell, Assembleur, ...

DEFINITION (donnée)

Les données sont I'objet de I'existence de l'informatique (étymologiqguement, informatique vient
de la contraction de « information » et de « automatique ». |l s’agit donc de pouvoir traiter auto-
matiqguement des informations).

On dit alors que I'on peut voir une donnée comme une information structurée.

Rappel de cours 2

Les données sont typées. Nous avons déja vus les nombres, les booléens, les chaines de carac-
teres,

Une fonction est un outil qui permet de transformer ou manipuler des don-

Remarque ,
nées.

1.2. PARADIGME FONCTIONNEL 5

1.2) Paradigme fonctionnel

a

a

Origine
Travail d’Alonzo Church dans les années 1932, en définissant le A-calcul.

Idée principale
Les fonctions sont des données comme les autres, on doit alors pouvoir les manipuler, les
passer en parameétre a d’autres fonctions, ...

Conséquences

On a di trouver une facon de considérer une fonction comme une donnée. Comme les autres
données, une fonction n’a pas de nom propre. Le « nom » d’'une fonction correspond en réalité
au nom de la variable dans laquelle elle est enregistrée.

Exemple mathématiques Notions introduites par Church
Pour définir une fonction quelconque : Définition d’'une fonction
f{ R - R Ax.(x+1)

x — x+1
Exemple d’utilisation avec x = 2.
Ici, on a définit la fonction f(x) =x + 1.

Utlisation : £(2) = 3. (Ax.(x +1))2)

Exemples plus complexes

Passage d’'une fonction en parametre : A(f,x).(f (x + 1))

#» Définir une fonction renvoyant une fonction : Ax.(Ay.(x + y))
Ax.Ay.(x+y)D) =Ay.(1+y)

a

a

Seconde idée
Un programme est une composition de fonctions. Il n’y a donc plus de notions d’états.

Conclusion

O Il n’y a plus de variable au sens ou on I'entend. Désormais, une variable est une don-
née immuable (non-modifiable), comme en mathématiques, on construit des objets a partir
d’autres données.

O Il n’y a plus de boucle, on doit passer par I'appel de fonction (récursivité).

O lln'yaif then else classique, désormais en programmation fonctionnelle, le if then else
a valeur d’expression, comme le ternaire de Java par exemple.

1.3) Langage fonctionnel - Haskell

1.3.1) Opeérations de base et inférence de type

L’addition / Soustraction de deux nombres
Soient a et b deux nombres.
Lorsque I'on veut les additionner en Haskell, il suffit d’écrire :

ghci> a + b

ghci> a - b

6 CHAPITRE 1. BASES DU LANGAGE HASKELL

Le produit / Quotient de deux nhombres
Lorsque I'on veut multiplier deux nombres entre eux, il suffit décrire :

ghci> ax*b

ghci> a / b

Puissance d’un nombre
Lorsque I'on veut multiplier n fois le nombre a (« le mettre a la puissance n ») :

Pour noter un nombre négatif en haskell, on utilise la notation -a, cette derniéere
possede quelques subtilités d’utilisations.
Exemple

ghci> -3

-3

ghci> -3 + 8
5

Remarque ghci> 8 + - 3
ERREUR

Le — peut servir pour dire qu’un nombre est négatif mais est aussi utilisé pour
effectuer des soustractions, il faut alors mettre des parenthéses.

ghci> 8 + (-3)
5

Affichicher la signature de type d’une expression
Pour afficher la signature de type d’une expression, il suffit d’écrire la comande :t

ghci> :t expression

Exemples
» Lexpression succ a permet de rajouter 1 au nombre a. (=incrémenter a)

ghci> succ 6
7

ghci> :t succ
succ :: Enum a => a -> a

Quelques explications s'imposent pour comprendre la signification de la « signature de type » de
la fonction succ.

> Enum a signifie que la fonction succ prend en paramétre une valeur a dont le type doit faire
partie de la classe Enum.

Rappel de cours 3
‘ La classe Enum englobe les types Int, Char, Bool, ...

> a -> asignifie alors que la fonction succ prend un élément de type a (appartenant donc a la
classe Enum) et renvoi un élément du méme type que a.

1.3. LANGAGE FONCTIONNEL - HASKELL 7

 Lexpression tail permet d’afficher une liste sans son premier élément.

ghci> tail [1, 2, 3, 4]
[2, 3, 4]

ghci> :t tail
tail :: GHC.Stack.Types.HasCallStack => [a] -> [a]

Alors, tail prend en argument une liste d’élément a appartenant a une classe de type particuliere
et elle renvoie une liste d’éléments du méme type que celle de a. On ne se préoccupe pas de
I'expression « GHC.Stack. Types.HasCallStack »

* Chaine de caractéres

ghci> :t "bonjour"
"bonjour" :: String

Signifie simplement que le type de "bonjour" est contenu dans la classe String.

« Liste d’entier, de caractéres

ghci> :t [1, 2, 3]
[1, 2, 3] :: Num a => [a]

ghci> :t [’1°, ’c’, ’d’]
[’1°, ’c’, ’d’] :: [Charl

> [1, 2, 3] estune liste d’élément d’un certain type a. En Haskell, tout est homogénre, c’est
a dire que les éléments d’'une liste doivent tous étre du méme type.
D’ou la contrainte Num a qui signifie que a est d’'un type contenu dans la classe Num (= type
numeérique) comme Int, Integer, Foat, Double.

> [’1°, ’c’, ’d’] est simplement une liste d’élément de type contenu dans la classe Char.

1.3.2) Ecrire des fonctions sur le terminal de commandes

Contexte
Les fonctions suivantes sont codées dirrectement dans le terminal.
Notre objectif vas étre de coder une fonction double, et une autre somme que I'on améliorera pour
diverses utilisations.
(1) La fonction double
Le principe est le suivant : la fonction prend en paramétre un nombre et renvoi son double.

ghci> double x = 2x*x

ghci> double 6
12

Nous pouvons compliquer l'utilisation de la fonction double. Maintenant, il faut utiliser cette fonc-
tion pour renvoyer le double de (8+1)*(6+1).

ghci> double (8+1)*(6+1)

126

CHAPITRE 1. BASES DU LANGAGE HASKELL

Pourquoi au lieu de faire 8+1 et 6+1 nous n’utilisons pas la méthode succ vue précédemment qui
permet d’incrémenter un nombre de 1.

ghci> double succ 8 * succ 6

ERREUR

Ici, vous obtenez une erreur car votre fonction double ne prend qu’'un parametre. Or les deux
appels a la méthode succ sont interprétés comme deux appels différents donc deux parametres.
Il faut donc mettre des parenthéses.

ghci> double (succ 8 * succ 6)
126

Un petit mot sur le type de la fonction double.

ghci> :t double
double :: Num a => a -> a

Alors, la fonction double prend en paramétre a d’un type cointenu dans la classe Num et renvoie
un élément du méme type.

(2) La fonction somme
Ici le principe reste simple : Prendre deux nombres et les additionner entre eux

ghci> somme x
ghci> somme 3
8

ghci> somme succ 1 8
ERREUR

ghci> somme (succ 1) 8

10

ghci> somme (succ 1) succ 7
ERREUR

y = xty
(5)

ghci> somme (succ 1) (succ 7)
10

ghci> somme (succ 1 + 2 * head [5, 6, 8]) (succ 3%6+45)
81

Structure de la derniére instruction

somme (succ 1 + 2 * head [5, 6, 8]) (succ 3 * 6 + 45)

paramétre 1 paramétre 2

Voici son fonctionnement

e succ 1 + 2 * head [5, 6, 8]
On incrémente 1 et on récupere le premier élément de la liste 5
Ona:2+2x5=2+10=12

* succ 3%6+45
On incrémente 3 de 1 puis on calcul 4 x 6 = 24 on ajoute 45.
on a alors : 24 + 45 =69

» Enfin c’est comme si on appelait somme 12 69 qui donne 81.

somme (succ 1 + 2 * head [5, 6, 8]) (succ 3*6+45) < somme 12 69

1.3. LANGAGE FONCTIONNEL - HASKELL 9

Un petit mot concernat le type de la fonction somme

ghci> :t somme

somme :: Num a => a -> a -> a

Il'y a une contrainte de type sur le.s parameétre.s (Num a =>) puisqu’il doit appartenir a la classe
Num. Ensuite a -> a -> a signifie que la fnction prend deux paramétres du méme type et renvoi
un résultat du méme type que les paramétres.

Structure du type

contrainte type retour méme type
somme :: t Num a => a -> a ->a
N——

2 parametres

1.3.3) Test en Haskell

Structure générale

if a then b else c

ou
* a est le test effectué
* b l'instruction a effectué en cas de réalisation du test
« c l'instuction a effectué en cas d’échec du test

— Linstruction if posséde un type, celuide b et ¢

— Cela sous-entend donc que b et ¢ sont de méme type et qu'’ils doivent tou-
jours étre définis.
Contrairement a python, C ou autre, la condition else est alors obligatoire.

Remarque

Exemple
On souhaite savoir si un nombre est pair, si c’est le cas on renvoi « nombre pair » sinon « nombre
impair ».

ghci> nombrePair x = if mod x 2 == 0 then "nombre pair" else "nombre impair"
ghci> nombrePair 63

"nombre impair"

Dans notre cas, on s’appercoit bien que b et ¢ sont définis et sont de méme type String.
Qu’en est-il du type de ce test?

ghci> :t nombrePair

nombrePair :: Integral a => a -> String

Ici, ma condition prend un élément d’un type contenu dans la classe Integral, elle ne prend qu’'un
parametre et renvoi une chaine de caracteres.

1.3.4) Definition de fonctions par filtrage

Définir une fonction par filtrage n’est pas possible dirrectement via le terminal

Remarque . S
il faut laors passer par un fichier, donc par un programme.

10 CHAPITRE 1. BASES DU LANGAGE HASKELL

DEFINITION (Pattern matching)

Le Pattern matching (ou filirage) en Haskell permet de définir une fonction, effectuant des op-
pérations différentes selon les arguments (=parametres) qui lui ont été donnés.

Chaque « partern » permet alors de décrire les valeurs de I'argument ainsi, la fonction applique
le code associé a ce dernier.

Exemple
1. Fonction Zero
Codons une fonction par filtrage qui permet de renvoyez "Zéro" si le nombre entré est 0 sinon
renvoyer "Non-zéro".

zero :: (Eq a, Num a) => a -> String
zero 0 "Zéro"

zero n = "Pas zéro"

main :: I0 Q)

main = do
print (zero 0)
print (zero 5)

0 N O O W N

Ilzéro n

"Pas zéro"

Explications
« J'ai spécifier la signature de type de ma fonction
Elle prend en argument un élément d’un type appartenant sois a la classe Eq, sois a la classe
Num, et elle renvoie une chaine de caractéres String.

- J'ai spécifier le retour des différents cas :
= Sin =0, renvoyer "Zéro"
- Sin #0, renvoyé "Pas zéro"

« J'ai terminé en définissant ce que fera le programme principal, ici il testera la fonction zero.

2. Fonction discriminant
Codons une fonction qui permet de savoir quel est le nombres de racines d’un polynéme de degré
2 en utilisant son discriminant.

discriminant :: (0Ord a, Num a) => a -> String
discriminant delta
| delta > 0 = "Deux racines réelles"

| delta < O = "Aucune racine réelle"
| otherwise "Une racine réelle"

-- Utilisations possible --
print (discriminant O0)
print (discriminant 5)
print (discriminant (-3))

© 00 N O O W N

[y
o

"Une racine réelle"

"Deux racines réelles"
"Aucune racine réelle"

1.3. LANGAGE FONCTIONNEL - HASKELL 11

1.3.5) Un peu de récursivite

Rappel de cours 4
‘ Une fonction est dite récursive lorsqu’elle s’appelle elle-méme.

Exemple
1. Fonction u
Ici, on code une suite mathématique définie par récurrence, elle renverra 0 sin =0 et 2u,_1 + 3 Si
ce n'est pas le cas.

uo =0

VneN, u, =
" {un+1 =2up-1)+3

(a) VERSION 1
On défini la fonction de maniére récursive.

Int -> Int
1

u
u 0
u n 2¥u(n-1)+3

-- Utilisation --
print (u 4)

D O W N =

125

(b) VERSION 2
On défini la fonction avec un opérateur ternaire if then else.

i un = if n == 0 then 0 else 2*xu(n-1)+3

2. Fonction sommeREP
n
On souhaite calculer la somme des éléments 0 a n notée Y .
i=0

sommeREP :: Int -> Int

sommeREP 0 = 0

sommeREP n = n + sommeREP (n - 1)
main :: I0 ()

main = do
-- let pour définir une variable --
let n = 5
print (sommeREP n)

1.3.6) Les listes en Haskell

© 00 N O O W N =

DEFINITION (iiste)

En haskell, une liste permet de stocker un certain nombre de variables du méme type.
Structure générale :

[eleml, elem2, elm3, ..., elemn]

12 CHAPITRE 1. BASES DU LANGAGE HASKELL

1. Liste vide
La liste vide est donnée sous la forme []
2. Liste en extension
La liste en extension est donnée sous la forme [eleml, elem2, elm3, ..., elemn].
3. Liste en adjonction entéte
Permet de rajouter un élément en téte de liste, elem : liste
4. Concaténation
Pour ajouter deux listes entre-elles, il suffit d’utiliser 'oppérateur ++.

listel ++ liste?2

o

Acces a I’élément ; on utilise l'instruction 1iste !! i
head permet de retourner le premier élément d’une liste.

7. tail permet d’afficher une liste sans son premier élément.
= head[] déclanche une erreur, on ne peut pas récupérer le premier élément
d’une liste vide.

= tail[] déclanche une erreur, on ne peut enlever un élément d’'une liste qui
est déja vide.

o

Remarque

ghci> head[]
ERREUR

ghci> taill]
ERREUR

8. Récupérer la taille d’une liste avec length
Exemples d’utilisations dans le terminal

ghci> 1 : [2, 3]

[1, 2, 3]

ghci> [1, 2, 3, 4] ++ [5, 6, 7]
(1, 2, 3, 4, 5, 6, 7]

ghci> [8, 4, 9, 5]!!12

9

ghci> [J!'0

ERREUR

ghci> head[1, 2, 3]

1

ghci> tailll, 2, 3]

[2, 3]

ghci> length([45, 78, 12, 54]
4

length[]

0

1.3.7) Traitement recursif sur les listes

Objectifs
« Somme d’éléments d’'une liste
 Ajouter 1 aux élément d’une liste
» Doubler chaque élément d’une liste

1.3. LANGAGE FONCTIONNEL - HASKELL 13

Faire la somme des éléments d’une liste
1. Identification des différents cas
Rappel de cours 5
Une liste est une stucture permettant de stocker des données du méme type. Elle peut étre
définie avec des valeurs ou alors vide.
Deux cas se distinguent alors :

[Le cas d’une liste vide, on renverra alors 0
(d Le cas d'une liste non-vide

2. Le programme

sommelListe :: Num a => [a] -> a
sommelListe [] = O
sommeListe (x:y) = x + sommelListe y

print (sommeListe [])
print (sommeliste [1, 5, 8])

3. Explication de I’'algorithme
Le cas de base est lorsque la liste est vide, on renvoie alors 0.
Pour les autres cas :
— x représente le premier élément de la liste
- y représente le reste de la liste
On ajoute alors a la somme récursive les éléments restant dans y.
Voici ce que fait réellement le programme.
SoitL = [2, 3, 4] laliste étudiée.
sommelListe [2, 3, 4] = 2 + sommelListe [3, 4]
sommelListe [2, 3, 4] = 2 + (3 + sommelListe [4])

D O W N e

W wwww

sommeListe [2, 3, 4] = 2 + (3 + (4 + sommeListe [])
sommeListe [2, 3, 4] =2 + (3 + (4 + 0))
sommelListe [2, 3, 4] =2 + 3 +4 + 0 =9

Ajouter 1 a chacun des éléments de la liste
1. Objectif
Accéder a chacun des éléments d’une liste puis les incrémenter de 1.

increment [1, 2, 3, 4] = [2, 3, 4, 5]

Voila le résultat que nous voulons obtenir.
2. Le programme

increment :: Num a => [a] -> [al]
increment [] = []
increment (x:y) = (x+1) : increment y

print (increment [])
print (increment [1, 5, 8])

D O W N

14

CHAPITRE 1. BASES DU LANGAGE HASKELL

3. Explications de I’algorithme

De la méme maniére que pour la fonction précédente, x représente le premier élément de la liste
et y le reste.

Lorsque I'on appelle la fonction, on récupere le premier élément, on lui ajoute 1 et on appelle
récursivement la fonction sur I'élément suivant et ainsi de suite.

Voici ce que fait réellement le programme.

increment [1, 2 ,3] = (1+1) : increment [2, 3]

increment [1, 2 ,3] (1+1) : ((2+1) : increment [3])

increment [1, 2 ,3] (1+1) : ((2+1) : ((3+1) increment [1))

increment [1, 2 ,3] = (1+1) : (2+1) : (3+1) : []

increment [1, 2, 3] =2 : 3 : 4 : []

increment [1, 2, 3] = [2, 3, 4]

Doubler chaque éléments d’une liste

ici,

exactement la méme chose que pour ajouter 1, sauf que la, on met x2.

o O W N

doubler :: Num a => [a]l -> [al
doubler [1 = []

doubler (x:y) = (x*2) : doubler y
print (doubler [])

print (doubler [1, 5, 8])

[2, 10, 16]

Tours de Hanoi.
Ajouter au cours lors de la prochaine MAJ

1.3. LANGAGE FONCTIONNEL - HASKELL 15

Pour aller plus loin sur les listes
= last [...] permet de retourner le dernier élément d’une liste.
= init [...] permet de retourner la liste privé de son dernier élément.
= take n [...] premet de prendre les n premiers éléments d’une liste.
= drop n [...] permet de supprimer les n premiers éléments d’une liste.

1.3.8) Fonction d’ordre supérieur

DEF| NITION (fonction d’ordre supérieur)

On appelle fonction d’ordre supérieur une fonction paramétrée par au moins une autre fonction.

1. La fonction map

Les traitements récursifs vus précédemments (incrementer, doubler) sont si-
Remarque milaires, a 'opération. On vas alors passer cette opération en parametre en
plus de la liste, c’est la fonction map.
(a) Fonction traitement
La fonction traitement permet de prendre deux arguments £ une fonction prenant un élé-
ment de type a et renvoie une liste d’éléments de type b ainsi qu’une liste d’élément de type
a.
La fonction effectue donc la fonction £ sur les éléments d’une liste.

traitement :: (a -> b) -> [a]l -> [b]
-- cas d’une liste vide --
traitement £ [1 = []

-- cas d’une liste non-vide --
traitement f (x:y) = f x : traitement f y

a o W N e

(b) Réécriture de increment avec la fonction traitement

1 incrementIntermediaire :: [Int] -> [Int]
2 incrementIntermediaire xs = traitement (\x -> x + 1) y

(c) Différence avec map

1 incrementMap :: [Int] -> [Int]
2 incrementMap y = map (+1) y

DEFINITION (rap)

La fonction map est une fonction d’ordre suppérieure qui permet d’appliquer une fonction a
chacun élément d’une liste.

Signature de type

1 map :: (a -> b) -> [a]l -> [b]

La fonction map prend deux arguments :

[(a -> b) Une fonction qui prend elle-méme un argument de type a et renvoi un résultat de
type b.

0 [al Une liste d’éléments de type a.
Et, elle renvoie une liste d’élément de type b.

16 CHAPITRE 1. BASES DU LANGAGE HASKELL

Exemple
On veut prendre une liste d’entiers, puis on veut les multiplier tous par 2.

map (\ x -> xx2) [1, 2, 3, 4]

(2, 4, 6, 8]

Dans notre exemple, la signature de type est donnée par :

1 map :: (Int -> Int) -> [Int] -> [Int]

2. La fonction filter

DEFINITION (f:1ter)

La fonction d’ordre supérieure filter est utiliser pour « filtrer » les éléments d’une liste a
I'aide d’une condition.
Cette derniere renvoie alors une liste d’élément qui respectent la condition établie.

La fonction filter permet de sélectionner les éléments d’une liste selon une

Remarque condition, opération.
filter (condition) liste
Signature de type
1 filter :: (a -> Bool) -> [a] -> [a]

La fonction filter prend deux arguments :

[(a -> Bool) Une fonction dite « de filtrage » qui prend elle-méme un argument de type a et
renvoi un résultat de type Bool.

0 [al Une liste d’éléments de type a.
Et, elle renvoie la listedes éléments de type a respectant la condition de filtrage.

Exemple
Récupérer les nombres pairs d’une liste
Version terminal

filter (\x -> mod x 2 == 0) [3, 4, 7, 8, 12]

4, 8, 12]

Version programme externe

-- Signature de type de la fonction --
estPair :: Int -> Bool

-- Corps de la fonction --

estPair x = x mod 2 == 0

-- Utilisation --
result = filter estPair [1, 7, 6, 4, 2, 0, 78, 41, 1]
print result

W N O O W N

(6, 4, 2, 0, 78]

La fonction filter est donc appelée pour chaque élément de la liste. Si cette derniére renvoie
True, I'élément est conservé dans la liste de retour. Sinon, I'élément est enlevé.

1.3. LANGAGE FONCTIONNEL - HASKELL 17

Exemple (avec les caracteres)
On souhaite récupérer les voyelles dans une chaine de caractére.
Version 1 - Brutale

filter (\¢ -> c ‘elem‘ "aeiouAEIOQU") "Bonjour vous"

oouou

Version 2 - Programme externe

1 estVoyelle :: Char -> Bool

2 estVoyelle ¢ = c ‘elem‘ "aeiouAEIOQU"

3

4 main = print (filter estVoyelle "bonjour vous")

oouou

1.3.9) Forme curryfiée

D) E FI NlTlON (currification)

La currification en haskell est une technique qui permet de transformer uen focntion qui prend
plusieurs arguments en une suite de fonctions ne prenant qu’un unique argument.

Prenons un exemple concrét
Considérons la fonction addition suivante :

1 add :: Int -> Int -> Int
2 add xy = x +y

Cette derniere prend donc deux arguments de type entiers et renvoie la somme de ces deux derniers.
Méthode de currification

(1 Ne considérons que des fonctions ne prenant qu’un seul argument.

O La premiere fonction prend x comme argument et elle renvoie une autre fonction qui attend y

1 La nouvelle fonction retourne alors x+y

-- On reprend la fonction initiale --
add :: Int -> Int -> Int
add x y = x + y

main = do
let fctIntermed = add 3
print (fctIntermed 5)

N O O W N e

Explications du fonctionnement

1. On utilise 1et pour créer une variable

2. fctIntermed est une fonction qui appelle add 3

3. Grace a la currification, lorsque I'on appelle add 3, nous fournissons un premier argument, on
obtient alors une nouvelle fonction qui attend un second argument.

4. De maniere générale on a:

1 let fctIntermed = 3 -- Revient a 3 + y --

5. Le fait ensuite d’appeler cette fonction intermédiaire et de lui donner 5 en argument fait que :

fctIntermed 5 = 3+ 5donc 8

18 CHAPITRE 1. BASES DU LANGAGE HASKELL

1.3.10) Pliage de liste, foldl et foldl1!

DEFINITION (fo14, fotar, foiar)

La fonction fold (ou ses équivalents foldl ou encore foldr est utilisée pour résuire une liste a
une seule valeur en appliquant une fonction de maniére itérative.

Remarque || foldl signifie pliage « a gauche », foldr quant a lui pliage « a droite ».

Prenons un exemple concrét

Exemple
Considérons la fonction suivante qui calcule la somme des éléments d’une liste

i somme :: [Int] -> Int
2 somme liste = foldl (+) 0 liste

Fonctionnement de la fonction
On considere qu’elle prend une liste L de n éléments.

1. (+) c’est 'opération que I'on souhaite appliquer aux éléments de la liste.
Ici c’est I'addition.

2. 0 c’est la valeur initiale du résultat

3. foldl signifie que I'on parcours la liste de gauche a droite.

4. foldl parcours alors toute la liste en ajoutant au résultat chaque élément de cette derniére un a
un. Sachant que le résultat est initialisé a 0.

Quelques exemples
Exemple 2, produit des éléments d’une liste

1 produit :: [Int] -> Int
2 produit liste = foldl (*) 0 liste

Exemple 3, concaténation de chaine
foldl fonctionne aussi sur les chaines de caractéres.

1 concatenation :: [Stringl -> String
2 concatenation liste = foldl (++) "" liste

Ne vous trompez pas entre foldl et foldr, si vous utilisez foldr, vous par-
Remarque courrez la liste de droite a gauche, c’est a dire du dernier élément de la liste
au premier.

DEFINITION (fo1a11)

foldll est une variante de foldl qui est utilisée pour réduire une liste a une seule valeur en
utilisant une fonction binaire.

Contrairement a fold, foldl1 n’a pas nécessairement besoin de valeur initiale.
Remarque Le premier élément de la liste passée en argument sert de valeur initiale du
résultat.

Signature de type

1 foldll :: (a -> a -> a) -> [a] -> a

1.3. LANGAGE FONCTIONNEL - HASKELL 19

La fonction fold11 prend deux arguments :

a (a -> a -> a) Une fonction qui prend elle-méme deux arguments de type a et renvoi un résultat
de type Bool.
a [a] Une liste d’éléments de type a.

Elle renvoie une valeur de type a pour résultat.
Exemple, maximum d’une liste

1 maximumListe :: [Int] -> Int

2 maximumListe liste = foldll max liste

3

4 main :: I0 ()

5 main = do

6 -- Utilise foldll pour trouver le maximum --
7 let resultat = maximumListe [4, 6, 10, 2, 8]
8 print resultat -- Affiche 10 --

foldl échouera sila liste donnée est vide car il n'aura pas de valeur de retour.
On a rappelé précédemment que la valeur de retour initiale est le premier élé-
ment de la liste passée en paramétre. Si il N’y a pas d’éléments dans la liste,
foldl1 ne renvoi rien donc une erreur.

Remarque

1.3.11) Le type maybe

DEFINITION (maybe)

En haskell, le type maybe est un type de donnée qui permet de représenter une valeur qui peut
étre présente ou absente.

Définition du type maybe

1 data maybe a = Nothin | Just a

[Nothing représente I'absence de valeur
1 Just areprésente la présence d’'une valeur de type a.

Exemple, une division bancale
On souhaite faire une fonction qui divise deux nombres mais ne peut pas diviser par 0.

i division :: Int -> Int -> Maybe Double

2 division _ O = Nothing

3 division x y = Just(fromIntegral x / fromIntegral y)
4

5 main :: I0 ()

6 main = do

7 print (division 10 2) -- Affiche Just 5.0 --

8 print (division 10 0) -- Affiche Nothing --

fromIntegral x permet de convertir un entier x en un nomble a virgule flot-
Remarque tante.
Maybe peut étre utiliser avec foldl et ses variante, puis avec fmap, map, >>=.

20 CHAPITRE 1. BASES DU LANGAGE HASKELL

1.3.12) Une variante de map, le fmap

DEFINITION (frap)

La fonction fmap en haskell permet d’appliquer une fonction a une valeur a l'intérieur d’'une struc-
ture de données qui est instance de la classe de type Functor.
Inclu des types comme les listes, Maybe, ...

Signature de type

1 fmap :: Functor f => (a -> b) -> f a -> f b

fmap prend deux arguments :

1 Functor f impose que f doit étre une structure de données appartenant a l'instance Functor

 (a -> b) une fonction qui prend en argument une valeur de type a et renvoi une valeur de type
b.

 f aune structure de données contenant des éléments de type a

elle renvoie £ b, une structure de données contenant des éléments de type b.

Exemple (1) sur les listes

1 fmap (+1) [1, 2, 3]

Exemple (2) avec Maybe

1 fmap (*2) Just 5
2 fmap (*2) Nothing

Just 10

Nothing

Pour le second exemple fmap (2*) Nothing ne prend méme pas la peine de
Remarque traiter la fonction puisque Nothing est passé en argument, rien est a transfor-
mer.

Rappel de cours 6

Un foncteur est une strucure de données qui peut étre transformée a I'aide d’'une fonction.
En haskell, un functor est défini par une classe de type Functor, qui permet d’appliquer une fonc-
tion a des valeurs contenues dans la structure de données sans la détruire.

1.3. LANGAGE FONCTIONNEL - HASKELL 21

1.3.13) Les monades

DEFINITION (monade)

(1) Définition brute
Une monade est une abstraction qui représente une computation qui peut étre enchainée.

(2) Définition avec Haskell
En haskell, uen monade est définie par la classe de type Monad, qui fournit une interface pour
travailler avec des valeurs encapsulées dans un contexte.

(3) Définition intuitive
Une monade permet de composer des opérations tout en gardant votre code propre et
fonctionnel, comme un conteneur qui vous aide a gérer ce qui se trouve a l'intérieur.

Définition de la classe Monad

1 classe Applicative m => Monad m where

return :: a -> m a
3 (>>=) :: ma ->(a ->mb) ->mb
Explications :

[return est une fonction qui prend une valeur et une place dans un contexte monadique.
Exemple
Pour une monade Maybe, return 5 renverra Just 5

 (>>=) est 'opérateur de liaison qui prend une valeur encapsulée de type m a et une fonction qui
transforme cette valeur en type m b.

Exemple avec Maybe

safeDivide :: Int -> Int -> Maybe Int
safeDivide 0 = Nothing

safeDivide x y = Just (x div y)

result :: Maybe Int
result = Just 10 >>= \x -> safeDivide x 2
print result

N O O W N

Ici, >>= permet d’enchainer la division sécurisée, tout en gérant le cas ou la division par 0 se produirais.

1.3.14) Lopérateur >>=

Lopérateur >>= est I'opérateur de liaison pour les monades. Il permet de chainer les calculs
monadiques ensemble.

Signature de la >>=

i1 (>>=) :: Monad m => m a -> (a ->m b) ->m b

22 CHAPITRE 1. BASES DU LANGAGE HASKELL

Lopérateur >>=:

 Monad m => contraint 'opérateur >>=, en gros, 'opérateur >>= fonctionne pour tout m qui est une
monade.

U m a, la monade d’entrée contient des éléments de type a.

 (a -> m b) une fonction prenant une valeur de type a extraitre de la monade m a, elle renvoie
une nouvelle valeur monadique de typ bm b.

Lopérateur >>= retourne une monade de type m b. En gros, on part d'une monade de type a et on
retourne une autre monade de type b.

Exemple

i1 safeDivide :: Int -> Int -> Maybe Int

2 safeDivide _ O = Nothing

3 safeDivide x y = Just (x div y)

4

5 result :: Maybe Int

6 result = Just 10 >>= (\x -> safeDivide x 2) >>= (\y -> safeDiv y 0)
7 print result

Fonctionnement du programme

e Just 10 >>= (-> safeDivide x 2)
Ici dans un contexte monadique Just 10 est extrait alors x = 10
On applique la fonction safeDiv x 2 qui renvoie 5.
* Just 5 >>= (-> safeDiv y 0)
Toujours dans un contexte monadique, on extrait Just 5 d’ou y=5
On applique la fonction safeDiv y 0 qui renvoie Nothing cat le cas d’'une division par 0 n’est pas
défini.

PARTIE 2

LES ASPECTS FONCTIONNELS DE JAVA

2.1) Rétrospective sur I’héritage en Java

Pour rappel Java est un langage de programmation orienté objet (POO), la notion d’héritage est donc
un aspect important du langage. C’est pour cette raison que des rappels s’imposent :

DEFINITION (héritage)

Lhéritage permet de réutiliser du code déja existant et de créer des relations hiérarchiques entre
les classes.

Soit 4 et # deux classes distinctes.

On considere alors qu’une classe & dite « classe fille » peut hériter des attributs et des méthodes
d’'une autre classe .« dite « classe mere ». En Java, pour spécifier qu’une classe hérite d’'une autre on
utilisera le mot clé extends.

Exemple concret

Prenons un exemple assez ludique, sur une table nous disposons de deux fruits, une pomme et une
orange. Nous sommes tous d’accord pour dire que ces derniers n'ont pas la méme couleur, le méme
golt donc qu'ils sont différents. Pourtant ce sont tous les deux des fruits malgré leurs caractéristiques
différentes.

1 public classe Fruit {

2 private String nom;

3 private String couleur;

4 private double poids;

5

6 public Fruit(String nom, String couleur, double poids) {
7 this.nom = nom;

8 this.couleur = couleur;
9 this.poids = poids;

10 +

11

12 public String getNom() {

13 return nom;

14 }

15

16 public String getCouleur () {
17 return couleur;

18 }

19

23

24 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

20 public double getPoids () {

21 return poids;

22 }

23

24 public void afficherInfo () {

25 System.out.println("Nom: " + nom);

26 System.out.println("Couleur: " + couleur);
27 System.out.println("Poids: " + poids + " grammes");
28 }

29

30 public double calculerPrix() {

31 return 0.0;

32 }

33 }

Nous avons donc définit au dessus une classe Fruit, elle posséde les attributs Nom, Poids, couleur
et forme ainsi que deux méthodes principales permettant d’afficher les informations du fruits et de
calculer son prix.

1 public classe Pomme extends Fruit {

2 private String variete;

3

4 public Pomme (String nom, String couleur, double poids, String variete) {
5 super (nom, couleur, poids);

6 this.variete = variete;

7 b

8

9 public String getVariete() {

10 return variete;

11 }

12

13 public void setVariete(String variete) {
14 this.variete = variete;

15 }

16

17 @0verride

18 public void afficherInfo() {

19 super.afficherInfo ();

20 System.out.println("Variété: " + variete);
21 }

22

23 @0verride

24 public double calculerPrix() {

25 /* Prix fictif : 2 euros par kilo */
26 return getPoids() * 0.002;

27 }

28 }

Le mot clé extends lors de la définition de la classe Pomme signifie que celle-ci hérite de la classe Fruit,
ce qui implique que :
Dans la suite de I'exemple, les classes Fruit et Pomme Seront représentées par les lettres F et P
respectivement.
» En héritant de F la classe P hérite de tous les attributs et les méthodes de F. Ceci évite la
répétition de code, entre autre, la classe P n’a pas besoin de redéfinit les attributs nom, couleur
et poids car ils sont présents dans la classe F.
 La classe P peut donc utiliser les méthodes et les attributs de la classe F, si ces derniers pos-
sedent une visibilité adéquat (public, ou protected).
» La classe P peut ajouter ces propres méthodes et attributs en plus de ceux hérités de la classe
F, ici ajout de l'attribut variete et redéfinition des méthodes de Fruit.

2.2. LESINTERFACES EN JAVA 25

* Le mot clé super permet d’appeler une méthode de la classe F.

Voici comment utiliser ces classes.

1 public class Main {

2 public static void main(String[] args) {

3 Pomme golden = new Pomme ("Golden", "Jaune", 150, "Golden");

4 golden.afficherInfo ();

5 System.out.println("Prix: " + golden.calculerPrix() + " euros");
6 ¥

7}

Nom: Golden
Couleur: Jaune

Poids: 150.0 grammes
Variété: Golden
Prix: 0.3 euros

Utilisation de @override

Le mot clé @override utilisé avant deux méthodes de la classe P permet de
dire au compilateur que I'on redéfinit des méthodes de la classe parent (ici
c’est la classe F).

Par exemple, en prenant la mathode afficherInfo() de la classe Pomme, On
redéfinit la méthode de la classe mére, c’est a dire que lorsque I'on appellera
cette méthode avec un objet de type P, on exécutera la méthode qui se trouve
dans cette classe fille.

Remarque

2.2) Les interfaces en Java

DEFINITION (interfaces)

Les interfaces en Java peuvent étre présentées comme étant un contrat qui définit un ensemble
de méthode abstraite que qu’une classe doit implémenter.

En gros toute classe qui implémente une interface doit contenir le code de toutes les fonctions
de cette derniére.

Une classe peut implémenter plusieurs interfaces.

Rappel de cours 7

On appelle méthode abstraite une méthode de classe définie sans corps.
De maniere générale :

visibilite typeRetour nomMethode (parametrel, ..., parametreN) ;

Cette définition est aussi appelée « signature » de la fonction.

Exemple, les outils sur Minecraft

* Un peu de contexte pour comprendre le probleme
~ =& Minecraft est un jeu bac & sable ou les outils sont des éléments plus qu'important puisqu’ils
permettent au joueur de miner, couper du bois, ou encore creuser.
Chaque outil a une utilité et un fonctionnement bien spécifique, mais chacun d’entre eu doit
pouvoir intéragir avec le monde.

26 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Rappels :

 Une Hache (Axe) permet de couper du bois.
1 Une Pioche (Pickaxe) permet de miner de la pierre, des minerais.
1 Une Pelle (shovel) permet quant a elle de creuser et récupérer du sable, de la terre, du gravier

« Implémentation sans interfaces

class Pickaxe {
public void useTool () {
System.out.println("Miner un bloc avec une pioche...");

}

class Axe {

1

2

3

4

5 %
6

.

8 public void useTool () {
9

System.out.println("Couper du bois avec une hache...");
10 }
11}
12
13 public class MinecraftWithoutInterface {
14 public static void main(String[] args) {
15 Pickaxe pickaxe = new Pickaxe();
16 Axe axe = new Axe();
17
18 useSpecificTool (pickaxe);
19 useSpecificTool (axe);
20 }
21
22 public static void useSpecificTool (Object tool) {
23 if (tool instanceof Pickaxe) {
24 Pickaxe pickTool = (Pickaxe) tool;
25 pickTool.useTool ();
26 } else if (tool instanceof Axe) {
27 Axe axeTool = (Axe) tool;
28 axeTool .useTool ();
29 } else {
30 System.out.println("Outil inconnu.");
31 }
32 }
33 }

Maintenant j'aimerais rajouter une classe Shovel qui contiendra les spécificités de la Pelle. Mais
on remarque déja qu’il y a quelques problemes.

=> Dans la classe principale MinecraftWithoutInterface, la méthode useSpecificTool qui
permet d’afficher quelle outil on veut utiliser est obligée de faire des cast afin de savoir a
quel classe appartient 'objet passé en argument.
En gros la on a deux classes donc deux cast, mais plus on rajoutera de class (Shovel, Sword,
...) plus il y aura de cast pour savoir quel objet on manipule.

=> Si vous étes a plusieurs développeurs a travailler sur 'implémentation des différents ou-
tils, chacun d’entre vous allez devoir toucher a la méthode principale, alors cela augmente
considérablement les risques de bugs.

=> Manque de polymorphisme
Tous les outils doivent étre traités différemment car pas le méme type, pas toujours le méme
comportement.

2.2. LESINTERFACES EN JAVA 27

- Implémentation avec interface

interface Tool {
void useToo0l(); /* Méthode commune & tous les outils */

1
2
3}
4
5 class Pickaxe implements Tool {
6 @0verride
7 public void useTool () {
8 System.out.println("Miner un bloc avec une pioche...");
9 by
10 }
11
12 class Axe implements Tool {
13 @0verride
14 public void useTool () {
15 System.out.println("Couper du bois avec une hache...");
16 }
17}
18
19 public class MinecraftWithInterface {
20 public static void main(String[] args) {
21 Tool pickaxe = new Pickaxe();
22 Tool axe = new Axe();
23
24 useTool (pickaxe) ;
25 useTool (axe) ;
26 }
27
28 public static void useTool(Tool tool) {
29 tool.useTool ();
30 }
31}
Explications

=> Création de I'interface Tool qui définit le signature de la méthode useTool().
Ainsi toutes les classes qui implémenteront cette interface devront définir le corps de la
méthode useTool().

=> Ainsi, les objets associés a l'interface Tool peuvent étre manipulés de la méme maniére
avec la méthode useTool () sans vérifier le type.

=> Extensibilité du code
On rappelle que je voulais ajouter la classe Shovel pour définir le comportement d’'une Pelle.
Ainsi on ajoutera :

1 class Shovel implements Tool {

2 @0verride

3 public void useTool () {

4 System.out.println("Digging with a shovel...");
5 b

6 }

=> Ainsi, méme si les développeurs doivent ajouter d’autres outils, puisque chacun est indépen-
dant mais qu’ils implémentent I'interface Tool, il n’y aura pas besoin de changer la méthode
principale useTool(Tool tool).

=> Le code devient alors bien plus clair.

28 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Dans Minecraft, le joueur peut miner différents types de minerais, comme le fer, I'or, ou le dia-
mant. Chaque minerai a des caractéristiques spécifiques, mais ils partagent aussi un comporte-
ment commun : étre minés et donner un matériau.

1. Créer l'interface Ore qui définit deux méthodes :

A. nine() Affichera quel minerai le joueur mine
B. getMaterial() Affiche quel matériau on obtient apres minage
(ex. 'diamond’, ’lron Ingot’).
2. Implémenter trois classes IronOre, GoldOre, DiamondOre
3. Créer une classe principale qui utilise ce que vous venez de coder.

2.3) Généricité en Java

2.3.1) Rappels de cours sur la généricite

DEFINITION (généricite)

La généricité permet de créer des classes, des interfaces et des méthodes capables de fonc-
tionner avec différents types de données tout en garantissant la sécurité des types lors de la
compilation.

Cela évite des cast, donc des conversions et des erreurs de types.

Avantages a utiliser la généricité :

=> Au lieu de créer des classes et des méthodes distinctes pour différents types, on utilise une
unique version générique unique.

=> Le erreurs de types sont détectées lors de la compilation.

=> Le code devient plus clair et lisible.

Exemple, (suite) les outils sur Minecraft

* Un peu de contexte pour comprendre le probleme
On a vu précédemment que I'on pouvais définir une interface Tool et 'implémenter pour
différentes classes d’outils, comme Pickaxe, Axe, Shovel. Cependant, si on veut gérer une
collection (liste) d’outils, la généricité peut devenir bien utile.

« Exemple sans généricité
On reprend linterface Tool et les différentes classes outils créées précédemment.
Création d’une classe ToolBox qui posséde un attribut tools de type List, un constructeur, une
méthode pour ajouter un outil & la liste et une autre méthode permettant de parcourir toute Ia liste
et d'utiliser tous les outils.

import java.util.Arraylist;
import java.util.List;

1
2

3

4 interface Tool {

5 void useTool ();
6

7

8

9

3

class Pickaxe implements Tool {
@0verride

2.3. GENERICITE EN JAVA 29

10 public void useTool () {

11 System.out.println("Miner avec une pioche...");
12 }

13}

14

15 class Axe implements Tool {

16 @0verride

17 public void useTool () {

18 System.out.println("Couper du bois avec une hache...");
19 +

20 }

21

22 class Shovel implements Tool {

23 @0verride

24 public void useTool () {

25 System.out.println("Creuser avec une pelle...");
26 }

27}

28
29 class ToolBox {

30 private List tools;

31

32 public ToolBox () {

33 this.tools = new ArrayList();

34 }

35

36 public void addTool(Object tool) {
37 tools.add(tool);

38 }

39

40 public void useAllTools () {

41 for (Object tool : tools) {

42 if (tool instanceof Tool) {
43 ((Tool) tool).useTool();
44 }

45 ¥

46 }

a7}

48

49 public class MinecraftToolBox {

50 public static void main(Stringl([] args) {
51 ToolBox toolBox = new ToolBox();
52 toolBox.addTool (new Pickaxe ());
53 toolBox.addTool (new Axe());

54 toolBox.addTool (new Shovel ());
55

56 toolBox.useAllTools (); /* Utilisation des outils */
57 }

58 }

Problémes qui vont se poser

=> Lors de I'ajout d’'un outil dans la liste, on ne vérifie pas si le type de I'objet que I'on ajoute est
de type Tool, cela pourra provoquer des erreurs lors de I'exécution.

=> Dans la méthode useA11Tools () il faut faire un cast sur chaque élément de la liste d’outils
ce qui alourdit le code et peut provoquer des erreurs si le type d’un des objets n'est pas
correct.

30

CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

« Exemple avec généricité

© 00 N O O W N

g g o0 o0 o oD DWwWWW W W W W WWNNNDNDDNDNDNDNDNDDNERE PR PR, R
N O O W N, O © 00 N0 WN P, O VW0 N0 WD, O © 00N WN R, O WO N O WD -, O

import java.util.ArrayList;
import java.util.List;

interface Tool {
void useTool ();

}
class Pickaxe implements Tool {
@0verride
public void useTool () {
System.out.println("Miner avec une pioche...");
}

3

class Axe implements Tool {
@0verride
public void useTool () {

System.out.println("Couper du bois avec une hache...

X
}
class Shovel implements Tool {
@0verride
public void useTool () {
System.out.println("Creuser avec une pelle...");
}

}

class ToolBox<T extends Tool> {
private List<T> tools;

public ToolBox () {
this.tools = new ArrayList<>();

3

public void addTool (T tool) {
tools.add(tool);
}

public void useAllTools () {
for (T tool : tools) {
tool.useTool ();
}

}
public class MinecraftToolBox {
public static void main(String[] args) {
ToolBox<Tool> toolBox = new ToolBox<>();
toolBox.addTool (new Pickaxe());
toolBox.addTool (new Axe());
toolBox.addTool (new Shovel ());

toolBox.useAllTools ();

D) g

2.3. GENERICITE EN JAVA 31

Apres exécution...

Miner avec une pioche...
Couper du bois avec une hache...

Creuser avec une pelle...

Avantages a la généricité

=> La classe ToolBox impose qu’elle n’accepte qye des objets T de type Tool, ainsi tout objet
ne faisant pas partie de la classe Tool provoquera une erreur lors de la compilation.

=> Puisque ToolBox garantit que les objets T soient de type Tool alors la liste Tools contiendra
obligatoirement des objets de type Tool, donc plus besoin de cast.

=> Si plus tard on souhaite implémenter d’autres outils (comme Mass, Hoe), la classe ToolBox
pourra les accepter tant qu'’ils implémentent la classe Tool, sans pour autant devoir modifier
la classe ToolBox.
= code plus flexible.

Créer une nouvelle boite d’outils PickaceBox qui devra contenir uniquement des objets qui im-
plémentent Pickaxe.

2.3.2) Les ArraylList, classe générique

DEFINITION (arrayList)

ArrayList est une classe de la bibliothéque standard qui permet en fait de stocker des éléments
dans un tableau dynamique.

Du coup, une ArrayList peut s’adapter dynamiquement a la taille des éléments qu’elle contient,
en ajouter, en supprimer sans avoir besoin de redimentionner manuellement le tableau (comme
en C...).

Application : Utiliser les ArrayList avec des types génériques pour créer des collections de types
spécifique en préservant la sécurité de type a la compilation.

2.3.2.1) Exemple simple aux ArrayList

1 import java.util.Arraylist;

2

3 public class ArrayListExample {

4 public static void main(String[] args) {
5 ArrayList<String> list = new ArrayList<>();
6

7 list.add ("Apple");

8 list.add("Banana");

9 list.add("Cherry");

10

11 for (String item : list) {

12 System.out.println(item);

13 }

14 }

32 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

D E FINITION (classe générique)

Les classes génériques permettent de définir des collection paramétrées par type.

En gros, au lieu de définit un liste d’'Object qui peut contenir n'importe quel
Remarque type, vous pouvez donner le type exact des objets que la liste contiendra,
comme ¢a on évite les cast inutiles et les erreurs de types.

2.3.2.2) Methodes associées aux ArrayList

Evidemment, la classe ArrayList permet d’introduire un certain nombre de méthodes qui lui sont
associés. Ici, ce sont les méthodes principales

Ajouter un élément

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T, deux facons d’ajouter un élément :

0 Ajouter un élément en fin de liste
0 Ajouter un élément a I'indice i

1 L.add(T element); /* Ajoute en fin de liste x/
2 L.add(int i, T element); /* Ajoute & 1l’indice i x*/

Accéder aux éléments

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T, alors on peut accéder a I'élément d’indice 1 :

1t L.get(int i); /* J’accéde a le i-éme élément x*/

Modifier les éléments

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T, alors on peut modifier I'élément d’indice 1 :

1 L.set(int i, T nouvElem); /* Je modifie le i-éme é&lément */

Supprimer des éléments

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T, deux fagons de supprimer un élément :

[Supprimer un objet T truc souhaité
O Supprimer un élément a I'indice i

1t L.remove(T truc); /* Supprime le premier élément correspondant */
2 L.remove(int i); /* Supprime le i-iéme élément x*/

2.3. GENERICITE EN JAVA 33

Liste vide ? .isempty(), .contains(), .index0f()

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T. :

 Vérifier si la liste est vide

 Vérifier si la liste contient T truc

(d Retourner l'indice de I'élément T truc si trouvé

1 L.isEmpty(); /* La liste est-elle vide 7 */
2 L.contains(T truc); /* La liste contient elle truc 7?7 */
3 L.index0f (T truc); /* Renvoi 1l’indice de truc si il existe */

Remarque || SiL.index0f(...) netrouve pas |'objet dans la liste, alors il renverra -1.

Taille de la liste

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T, alors on peut obtenir la taille de L :

1 L.size();

Itération et parcours .iterator(), .forEach()

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T, alors on peut parcourir un tableau :

1t L.iterator(); /* Retourne un itérateur pour parcourir les éléments x*/
2 L.forEach(Consumer<? super T> action);
3 /* Applique une action & chaque élément */

Nettoyer une liste

Soit ArrayList<T> L = new ArrayList< > une liste dynamique contenant des éléments de
type T, alors on peut nettoyer (= vider) la liste :

1 L.clear();

2.3.3) Linterface genérique Collection<E>

DEFINITION (Linterface cotiection)

Collection<E> esy une interface générique, elle représente un ensemble d’objet (appelés élé-
ments).

Puisque la classe ArrayList<E> implémente justement Collection<E> alors
elle possede toute les méthodes de cette derniéres.

La signature de certaines des méthodes décrites au dessus appartiennent a
Colection<E> comme add(E elem) par exemple.

Remarque

34 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Un type simple ne peut pas étre utilisé pour un type générique, on utilise alors

Remarque les types Wrapper a la place (Integer au lieu de Int par exemple).

La classe générique ArrayList<E> implémente l'interface générique List<E>.

2.3.4) Les HashSet, une autre collection généerique

DEFINITION (Hashset)

HashSet est une implémentation de I'interface Set<E>. Ce dernier est utilisé pour stocker des
éléments unique.

En gros, il ne permet pas de stocker des doublons.

Pour gérer ses données, HashSet utilise une table de hachage en interne (HashMap).

Caractéristiques principales

* Les éléments d’un HashSet sont uniques.
Si vous souhaitez ajouter un élément déja présent, ce dernier ne sera pas ajouté

» Les données ne sont pas ordonnées.
+ Si on ajoute/supprime un élément, I'ordre peut changer.

Rappel de cours 8

Puisque HashSet implémente Set<E> et hérite de Collection<E> ainsi, elle propose les méthodes
suivantes :

* add(E elem), remove(Object o), clear()
* isEmpty(), contains(Object o)
» et dautres...

Exemple, Partie spéciale sur Minecraft

» Dans Minecraft, un joueur a un inventaire, mais on veut s’assurer que certains types d’objets
ne peuvent pas étre dupliqués. Par exemple, dans une partie spéciale, un joueur ne peut
avoir qu’un seul exemplaire de chaque outil rare (comme une « épée de diamant » , une «
pioche enchantée », etc.).

import java.util.HashSet;

1
2
3 public class MinecraftInventory {

4 public static void main(String[] args) {

5 HashSet<String> inventory = new HashSet<>();
6

-

8

9

inventory.add("Epée de diamant");
inventory.add("Pioche enchantée");
inventory.add ("Arc puissant");

11 System.out.println("Inventaire " + inventory);

12

13 boolean ajoutEpee = inventory.add("Epée de diamant");
14 if (l'ajoutEpee) {

15 System.out.println("Tu as déja une Epée de diamant
16 dans 1’inventaire !'");

17 }

18

19 if (inventory.contains("Pioche enchantée")) {

20 System.out.println("Tu as une Pioche enchantée !");

21 } else {

2.3. GENERICITE EN JAVA

22
23
24
25
26
27
28
29
30
31

System.out.println("Tu n’as pas encore de Pioche enchantée.");

}

inventory.remove ("Arc puissant");

System.out.println("Aprés suppression, inventaire

System.out.println("Nombre d’outils dans l’inventaire

inventory.size ());

Remarque

Inventaire

On tente d’ajouter (ligne 13) l'item « Epée de diamant » dans inventory, mais
cette derniére est déja dans l'inventaire alors, la valeur de ajoutEpee sera

fausse.

2.3.5) Zoom sur la boucle « for each »

En Java, la boucle for-each est une boucle améliorée qui est utilisée pour parcourir les éléments d’'une

collection ou d’un tableau de maniére simple et lisible.

Cette boucle fonctionne avec toute classe qui implémente l'interface Iterable<E> comme ArrayList<E>

et HashSet<E> vus précédemment.

Exemple, liste d’outils

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

import java.util.Arraylist;

public class ForEachExample {
public static void main(Stringl[] args) {

/* Création d’une collection */
ArrayList<String> tools = new ArrayList<>();
tools.add ("Epée");

tools.add ("Pioche");

tools.add ("Arc");

/* Parcourir les éléments avec for-each */
for (String tool : tools) {
System.out.println(tool);

Structure générale de la boucle for-each

for (Type truc : collection) { ... }

" + inventory);

["Epée de diamant", "Arc puissant", "Pioche enchantée"]
Tu as déja une Epée de diamant dans 1’inventaire !
Tu as une Pioche enchantée !

Aprés suppression, inventaire

["Epée de diamant", "Pioche enchantée"]
Nombre d’outils dans 1’inventaire : 2

36 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Une interface peut contenir le corps des méthodes si ces derniéres sont décla-

Remarque e s
9 rées avec les mots clé static ou final, mais seront étudiées plus tard.

2.4) Les lambda-expressions

DEFINITION (1amba-expression)

Les expressions lambda ont été introduites en Java 8, elles permettent de simplifier la création
d’objets pour les interfaces fonctionnelles (interfaces avec une seule méthode abstraite).
Rendant le code plus concis.

Autrement dit, on peut voir une lambda expression comme étant une méthode anonyme utilisée
pour définir une fonction en ligne.

Syntaxe générale des lambdas expressions
(paramétres) -> { corps de la méthode }

Exemple, tri d’'une liste
On a une liste de chaine de caractéres (String) et on souhaite la trier par ordre alphabétique.
» Sans utiliser d’expression lambda

1 import java.util.x*;

2

3 public class LambdaExample {

4 public static void main(Stringl[] args) {

5 List<String> names = Arrays.asList("Steve", "Alex", "Herobrine");
6

7 Collections.sort(names, new Comparator<String>() {
8 @0verride

9 public int compare(String a, String b) {

10 return a.compareTo(b);

11 }

12)

13 System.out.println(names);

14 }

15}

 En utilisant les expressions lambda

1 dimport java.util.x*;

2

3 public class LambdaExample {

4 public static void main(String[] args) {

5 List<String> names = Arrays.asList("Steve", "Alex", "Herobrine");
6

7 Collections.sort(names, (a, b) — a.compareTo(b));

8 System.out.println(names);

9 }

10 }

[Alex, Herobrine, Stevel

Collections.sort(names, (a, b) -> a.compareTo(b));
On utilise uhne méthode statique de la classe Collections qui trie les éléments d’une liste prenant en
parametre, la liste a trier, ainsi que la regle de tri.

2.5. 4 INTERFACES FONCTIONNELLES DE BASE 37

Rappel de cours 9

La méthode . compareTo()
Elle fait partie de String et compare de chaine lexicographiquement :

 Si a < b renvoi un nombre négatif.
 Si b <a renvoi un nombre positif.
* Sia =5 renvoi 0.

Dans Haskell, le systéeme de type est beaucoup plus flexible et intelligent en
ce qui concerne l'inférence des types. Lorsque vous écrivez une lambda (ou
une fonction anonyme), le compilateur peut déduire automatiquement le type
des parameétres a partir du contexte, sans que vous ayez besoin de spécifier
explicitement les types. Cela rend les lambdas en Haskell trés concises et le
langage généralement plus flexible.

Remarque

2.5) 4 interfaces fonctionnelles de base

2.5.1) Linterface Function<T, R>

DEFINITION (Function<T, R>)

Linterface Function<T, R> fait partie de 'API des fonctions lambda introduites en Java 8. Elle
est utilisée pour représenter une fonction qui prend un argument de type T et renvoie un résultat
de type R.

Signature de I'interface Function

1 Q@FunctionallInterface

2 public interface Function<T, R> {
3 R apply (T t);

4}

Explications :

0 Type générique T et R
=> Le type T représente le type de 'argument que recoit la fonction.
On rappel que T doit faire partie des types Wrapper.
=> Le type R est le type du résultat retourné par la fonction.

1 Méthode apply(T t)
Méthode principale de l'interface, qui définit le comportement de la fonction.
En gros, quand vous créez une instance de l'interface Function vous devez aussi définir la mé-
thode apply pour spécifier ce que la fonction doit faire avec 'argument T.

Exemple, Création d’'un plugin sur Minecraft

» Vous souhaitez créer un plugin Minecraft ou on veut vérifier si un joueur a atteint son objectif.

import java.util.function.Function;

1

2

3 public class MinecraftFunctionExample {

4 public static void main(Stringl[] args) {

38 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

5 Function<Player, String> checkGoal = (Player player) — {
6 if (player.getPoints () >= 100) {
7 return player.getName() + " a atteint 1’objectif !";
8 } else {
9 return player.getName() + " doit encore travailler
10 pour atteindre 1l’objectif.";
11 }
12 };
13 Player playerl = new Player("Alex", 120);
14 Player player2 = new Player("Steve", 80);
15
16 System.out.println(checkGoal.apply(playerl));
17 System.out.println(checkGoal.apply(player2));
18 }
19 }
20
21 class Player {
22 private String name;
23 private int points;
24
25 public Player (String name, int points) {
26 this.name = name;
27 this.points = points;
28 }
29
30 public String getName () {
31 return name;
32 }
33
34 public int getPoints () {
35 return points;
36 }
37}
Explications :

* La fonction main
=> Création de checkGoal
checkGoal est une variable qui permet de vérifier si le joueur a atteint son objectif ou non.
checkGoal est une variable de type Function<Player, String>, c’est a dire que la fonction
prend en argument un objet de type Player et renvoi un argument de type String.
=> Création de deux objets issus de la classe Player et vérifions si ils ont atteint I'objectif.

Alex a atteint 1’objectif !

Steve doit encore travailler pour atteindre 1’objectif.

2.5.2) Linterface Predicate<T>

DEFINITION (predicate)

Linterfacte Predicate<T> a elle aussi été introduite depuis Java 8. C’est une fonction qui évalue
une condition (= prédicat) sur un objet de type T et retourne un booléen.

2.5. 4 INTERFACES FONCTIONNELLES DE BASE 39

Signature de I'interface Predicate<T>

1 Q@FunctionallInterface

2 public interface Predicate<T> {
3 boolean test(T t);

4}

La fonction test regoit un argument de type T et renvoi un booléen.
Vous le savez retourne true si vrai, false sinon.

En plus de la méthode test, I'interface fournit d’autre méthodes pour composer plusieurs prédicats :
(d and(Predicate<? super T> other)
Combine deux prédicats avec la relation logique ET.

1 or(Predicate<? super T> other)
Combine deux prédicats avec la relation logique OU (inclusid).

1 negate()
Retourne un prédicat qui est en fait I'inverse logique du prédicat courant.

a ...

Exemple (1)

import java.util.function.Predicate;
public class SimplePredicateExample {
public static void main(String[] args) {

1
2
3
4
5 Predicate<Integer> isEven = n — n % == 0;
6
7
8
9

System.out.println(isEven.test (4));
System.out.println(isEven.test (7));

10 }

true
false

Exemple (2), combinaison de prédicats

i dimport java.util.function.Predicate;

2

3 public class SimplePredicateComposition {

4 public static void main(String[] args) {

5 Predicate<Integer> isEven = n — n % 2 == 0;

6 Predicate<Integer> greaterThanFive = n — n > 5;
7

8 Predicate<Integer > evenAndGreaterFive = isEven.and(greaterThanFive);
9

10 System.out.println(evenAndGreaterFive.test (8));
11 System.out.println(evenAndGreaterFive.test (4));
12 System.out.println(evenAndGreaterFive.test (7)) ;
13 }

14}

Ici on a créé deux prédicats, un qui vérifie si le nombre est pair, un autre si il est plus grand que 5.
Ensuite, on a créer un prédicat « fusion » qui utilise les deux créés précédemment.

40 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

2.5.3) Linterface Consumer<T>

DEFINITION (consumer)

Introduite avec Java 8,
Linterface Consumer<T> et elle est en fait représentée par une opération qui prend un argument
de type T et ne retourne rien.

Consumer<T> est idéale pour effectuer des opérations comme afficher des don-

Remarque ! - . s
9 nées, modifier un objet, effectuer une opération sans retourner de valeur.

Signature de I'interface Consumer<T>

1 @FunctionalInterface

2 public interface Consumer<T> {
3 void accept(T t);
4

3

La fonction accept regoit un argument de type T et ne renvoi rien.

En plus de la méthode accept(T t), Consumer fournit une méthode par défaut qui permet de com-
biner plusieurs Consumer :

andThen (Consumer<? super T> after>

Exemple (1)
i dimport java.util.Arrays;
2 import java.util.List;
3 import java.util.function.Consumer;
4
5 public class ConsumerExample {
6 public static void main(String[] args) {
7 Consumer <String> print = s — System.out.println(s);
8 List<String> names = Arrays.asList("Steve", "Alex", "Notch");
9
10 names . forEach(print);
11 }
12 }

Dans le main,

 Création d’'un Consumer<String> qui permet d’afficher une donnée.
+ Création d’'une List de trois éléments de type String
 Parcours de la liste en effectuant le Consumer sur chaque élément

2.5. 4 INTERFACES FONCTIONNELLES DE BASE 41

Exemple (2), combinaison de deux Consumer

1 dimport java.util.function.Consumer;

2

3 public class ConsumerChainingExample {

4 public static void main(Stringl[] args) {

5 Consumer <String> print = s — System.out.println("Valeur : " + s);

6

7 Consumer <String> printLength = s — System.out.println("Longueur : " +
. s.length());
9

10 Consumer <String> combined = print.andThen(printLength);

11

12 combined.accept ("Minecraft");

13 }

14}

Deux Consumer :
» Un pour afficher une valeur
 Un pour afficher la taille de la chaine de caractére entrée en paramétre

Ainsi, on combine les deux Consumer, le troisieéme vas donc afficher la valeur de la chaine de caractére
puis sa longueur.

Valeur : Minecraft

Longueur : 9

2.5.4) Linterface Supplier<R>

DEFINITION (suppiier)

Linterface Supplier<R> a été introduite en Java 8, elle représente un « fournisseur de résultat »,
en gros elle ne prend aucun argument mais renvoi une valeur de type R.

Signature de I'interface Supplier<R>

1 Q@FunctionallInterface

2 public interface Supplier<R> {
3 R get();

4}

La fonction ne prend aucun argument mais renvoi une valeur de type R.

Exemple (1)

import java.util.function.Supplier;
public class SimpleSupplierExample {
public static void main(String[] args) {

1
2
3
4
5 Supplier<String> messageSupplier = () — "Bienvenue dans Minecraft!";
6
7
8
9

System.out.println(messageSupplier.get());

Bienvenue dans Minecraft !

42 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Exemple (2), un peu plus compliqué

1 import java.util.Arraylist;

2 import java.util.List;

3 import java.util.function.Supplier;

4

5 public class ListSupplierExample {

6 public static void main(Stringl[] args) {

7 Supplier<List<String>> listSupplier = Arraylist::new;
8

9 List<String> newlist = listSupplier.get();
10 newlList.add("Minecraft");

11 newlList.add("Java");

12

13 System.out.println("Liste : " + newList);
14 }

15}

Liste : [Minecraft, Javal

2.6) Laclasse Optional

Rappel de cours 10

En Haskell, on pouvais représenter le fait qu’une fonction retourne un résultat ou pas avec le type
Maybe, la clase Optional en java permet de faire la méme chose.

DEFINITION (optional)

Introduite avec Java 8,

La classe Optional est utilisée pour représenter un résultat absent ou présent.
Permettant de mieux gérer les cas d’une valeur null et de manipulation de null.
Comme les NullPointerException.

Définition de la classe Optional

1 public final class Optional<T> {
2 private Optiomnal() { /* private constructor */ }

3}

Optional est une classe générique, ce qui signifie qu’elle peut contenir n’importe quel type d’objet. Elle
contient une valeur de type T, ou peut étre vide (sans valeur).

2.6.1) Construction d’un Optional

3 facons vues en cours

0 Contruction d’'un Optional représentant 'absence de données (Nothing en Haskell) :
Optional.empty()

1 Construire un Optional qui encapsule une donnée :
Optional.of (donnee)

O Contruire un Optional vide ou qui encapsule une donnée a partir d’'une référence qui peut étre
null :
Optional.ofNullable(reference)

2.6. LA CLASSE OPTIONAL 43

2.6.2) Reécupérer la valeur d’un Optional

Il est possible de récupérer une donnée encapsulée dans un Optional en utilisant la méthode get ().
Mais, si I'Optional est vide, get renverra une erreur.

Ainsi, on introduit la méthode orElse(defaultValue) qui s’applique a tout les Optional et renvoie la
donnée encapsulée dans le Optional si il n’est pas vide. Sinon renverra defaultValue.

Exemple, récupérer la donnée d’un Optional

import java.util.Optional;

1
2
3 public class SimpleOptionalExample {

4 public static void main(String[] args) {

5 Optional<String> playerName = Optional.of("Steve");

6 String name = playerName.orElse("Joueur inconnu");

7 System.out.println(name);

8 Optional<String> emptyName = Optional.empty();

9 String defaultName = emptyName.orElse ("Joueur inconnu");
10 System.out.println(defaultName) ;

11 }

12}

Steve

Joueur inconnu

2.6.3) Deéterminer si un Optional est vide

Pour savoir si un Optional est vide ou non, deux méthodes possibles isEmpty() et isPresent().

Exemple

import java.util.Optional;

1
2
3 public class OptionalEmptyCheck {

4 public static void main(Stringl[] args) {

5 Optional<String> playerName = Optional.of("Steve");
6 if (playerName.isEmpty ()) {

7 System.out.println("L’0Optional est vide.");

8
9

} else {
System.out.println("L’0Optional contient une valeur "

10 + playerName.get ());
11 }
12 Optional<String> emptyName = Optional.empty();
13 if (!emptyName.isPresent()) {
14 System.out.println("L’0Optional est vide.");
15 } else {
16 System.out.println("L’0Optional contient une valeur : "
17 + emptyName.get ());
18 }
19 }
20 }

L’Optional contient une valeur : Steve

L’Optional est vide.

44 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

2.6.4) Utilisation de map et filter surun Optinal

2.6.4.1) Optional estun foncteur : Méthode map

Rappel de cours 11
En Haskell Maybe est un foncteur, on pouvait alors utiliser fmap.

1 Functor f => (a -> b) ->f a -> f b

En Java, Optional présente les mémes propriétés avec la méthode map.

i Optional <A>
2 Optional map (Function<A, B>)

Rappel de cours 12
On se souvient que map permet de transformer la valeur dans un Optional si elle est présente.

Exemple
1 dimport java.util.Optiomnal;
2
3 public class OptionalMapExample {
4 public static void main(String[] args) {
5 Optional<String> playerName = Optional.of("Steve");
6
7 Optional<String> uppercaseName = playerName.map(String::toUpperCase);
8
9 uppercaseName . ifPresent (System.out::println);
10
11 Optional<String> emptyName = Optional.empty();
12
13 Optional<String> result = emptyName.map(String::toUpperCase);
14 result.ifPresentOrElse (
15 System.out::println,
16 () — System.out.println("Aucun nom disponible")
17)
18 }
19 }

STEVE

Aucun nom disponible

2.6.4.2) Filtersurun Optional

La méthode filter permet d’obtenir un nouvel Optional a partir d’'un Optional en suivant le fonction-
nement suivant :
=> Si Optional vide alors on obtient Optional vide
=> Sila donnée de I'Optional ne respecte pas le prédicat passé en parameétre de filter, on obtient
un Optional vide
=> Si la donnée de I'Optional respecte le prédicat passé en parametre de filter, on obtient le
méme Optional qu’au début

2.6. LA CLASSE OPTIONAL 45

Exemple
i dimport java.util.Optional;
2
3 public class OptionalFilterExample {
4 public static void main(String[] args) {
5 Optional<String> playerName = Optional.of("Steve");
6
7 Optional<String> longName = playerName.filter (name — name.length() > 4);
8
9 longName.ifPresent (System.out::println);
10
11 Optional<String> shortName = playerName.filter (name — name.length() > 5);
12
13 shortName.ifPresentOrElse (
14 System.out::println,
15 () — System.out.println("Nom trop court")
16)
17 }
18}

Steve

Nom trop court

2.6.5) Utiliser un Optional pour éviter de multiples tests a null

Exemple
1 public class Player {
2 private String name;
3
4 public Player (String name) {
5 this.name = name;
6 }
7 public String getName () {
8 return name;
9 b
10 }
11
12 public class NullCheckExample {
13 public static void main(Stringl[] args) {
14 Player player = null;
15
16 if (player != null) {
17 String name = player.getName ();
18 if (name != null) {
19 System.out.println(name.toUpperCase ());
20 } else {
21 System.out.println("Nom du joueur non disponible.");
22 }
23 } else {
24 System.out.println("Aucun joueur.");
25 }
26 }
27}

Ici, sans utiliser d’'Optional, on est obliger de faire des tests a répétition afin de savoir si le joueur
existe, siil a un nom, ...

46 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Cela rend le code bien plus lourd et difficile a maintenir.
La solution est donc d’utiliser Optional.

i dimport java.util.Optional;
2
3 public class Player {
4 private String name;
5
6 public Player (String name) {
7 this.name = name;
8 by
9
10 public Optional<String> getName () {
11 return Optional.ofNullable(name); /* Retourne un Optional x*/
12 }
13}
14
15 public class OptionalExample {
16 public static void main(Stringl[] args) {
17 Player player = new Player ("Steve");
18
19 String result = player.getName ()
20 .map (String::toUpperCase)
21 .orElse("Nom du joueur non disponible");
22 System.out.println(result);
23
24 Player unnamedPlayer = new Player (null);
25
26 String result2 = unnamedPlayer.getName ()
27 .map (String::toUpperCase)
28 .orElse("Nom du joueur non disponible");
29 System.out.println(result2);
30
31 Optional <Player > noPlayer = Optional.empty();
32
33 String result3 = noPlayer.flatMap(Player::getName)
34 .map(String::toUpperCase)
35 .orElse ("Aucun joueur.");
36 System.out.println(result3);
37 }
38 }
Explications

On souhaite vérifier si un joueur existe, et si il posséde un nom, alors on I'affichera en majuscule.

« CAS 1
player est un joueur qui s’appelle Steve
player.getName() renverra alors Optional("Steve") ainsi lorsque I'on applique map dessus
avec toUpperCase on vas alors obtenir Optional ("STEVE").

« CAS 2
unnamedPlayer est un joueur sans nom
Alors unnamedPlayer.getName() renvoie Optionnal (null) le map ne peux donc s’effectuer, on
renvoi un message d’erreur.

« CAS3
noPlayer est un Optional vide
Ici f1latMap() ne s’exécute pas et renvoi dirrectement Aucun joueur

2.6. LA CLASSE OPTIONAL 47

STEVE
Nom du joueur non disponible

Aucun joueur

Remarque || On utilise flatMap() dans le cas n°3 car player est déja un Optional.

2.6.6) Modifier une donnée encapsulee dans un Optional

Rappel de cours 13

Contrairement aux langages de programmation fonctionnels comme Haskell ou les données sont
des objets immuables. |l peut arriver que I'on souhaite modifier une donnée encapsulée dans un
Optional.

Une donnée encapsulée dans un Optional n’est pas directement modifiable.
Remarque Pour se faire, il faudra appliquer une méthode sur I'Optional visé et réencap-
suler le résultat dans un nouvel Optional.

2.6.6.1) Methode 1 - Utiliser i fPresent

Si 'Optional encapsule une donnée immuable, il est possible de modifier cet objet par un acces expli-
cite via isPresent().
Exemple

import java.util.Optional;

1
2
3 public class OptionalModifyObjectExample {

4 public static void main(Stringl[] args) {

5 Optional<Player> optionalPlayer = Optional.of(new Player("Steve"));
6 /* Optinal A */

-

8

9

optionalPlayer.ifPresent (player — player.setName ("Alex"));
/* Optional B */
10

11 optionalPlayer.ifPresent (player — System.out.println(player.getName ()));
12 /* Optional C */

13 }

14}

15

16 class Player {

17 private String name;

18 public Player (String name) {

19 this.name = name;

20 X

21

22 public String getName () {

23 return name;

24 }

25

26 public void setName(String name) {
27 this.name = name;

28 }

2 }

48 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Explications

Dans le main, on encapsule un objet Player. On souhaite modifier "Steve" en "Alex" alors on utilise la
méthode isPresent().

En gros, si il y a une donnée (ici un joueur) dans I'Optional alors je change son nom en "Alex", enfin
si le joueur est toujours présent j’affiche son nom. (vérification)

2.6.6.2) Methode 2 - Utiliser map () pas vue en cours

Pour modifier une donnée encapsulée dans un Optional on peut aussi utiliser map. Ainsi en utilisant
map on vas alors créer un nouvel Optional qui contiendra la valeur modifiée de I'ancien si elle existe.
Dans le cas contraire, on retourne alors un Optional vide.

Exemple
1 dimport java.util.Optiomnal;
2
3 public class OptionalModifyExample {
4 public static void main(String[] args) {
5 Optional<String> playerName = Optional.of("Steve");
6 Optional<String> modifiedName = playerName.map(name — name + " le grand");
7 System.out.println(modifiedName.orElse ("Aucun joueur modifier."));
8
9 Optional<String> emptyName = Optional.empty();
10 Optional<String> result = emptyName.map(name — name + " le grand");
11 System.out.println(result.orElse ("Aucun joueur & modifier."));
12 +
13}

Steve le grand

Aucun joueur & modifier.

2.6.7) Optional est une monade

Rappel de cours 14
Signature de type de I'opérateur >>=

1 (>>=) :: Monad m => m a -> (a ->m b) ->m b

Avec map on aurait eu

1 maybe a -> (a -> maybe b) -> maybe (maybe b)

Pour Optional c’est flatMap qui joue le réle de >>=.
Typage simplifié

1 Optional<T>
2 Optional<U> flatMap(Function<T, Optional<U>> mapper)

2.7. GESTION DES FLUX 49

Typage réel

1 Optional<T>
2 Optional<U> flatmap(Function< 7?7 super T, 7 extends Optional< 7 extends U>>)

2.7) Gestion des Flux

2.7.1) Généralités sur les flux

Rappel de cours 15

En Haskell on a vu que I'on pouvait traiter des masses de données d’un type précis grace aux listes.
En Java c’est aussi possible grace aux flux Stream.

Les flux (Stream) permettent de traiter des données de maniéres séquentielle ou paralléle.
En général on les utilise pour lire ou écrire des données, faire des transformations, ou appliquer
des calculs sur des collections.

Tout comme le type 1ist est paramétré par un type, le type Stream est en fait

Remar s
emarque un type parametreé : Stream<T>.

Pourquoi Stream<T> et pas List<E>?
 Assurer la rétro-compatibilté

DEFINITION (rétro-compatibilité)

La rétro-compatibilité (ou compatibilité ascendante) désigne la capacité d'un systéme,
d’'un logiciel ou d’'un matériel plus récent a fonctionner avec des versions antérieures.

1 Le type List n’est pas congu pour I'évaluation paresseuse

D) E FINITION (évaluation paresseuse)

Lévaluation paresseuse en Java consiste a ne pas évaluer une expression ou exécuter
un calcul tant que son résultat n’est pas réellement nécessaire. Cela permet d’optimiser les
performances en évitant des calculs inutiles.

Exemple
Lutilisation des opérateurs logiques && et ||, ou Java évalue uniqguement ce qui est nécessaire :

=> Avec && : Si la premiére condition est false, la seconde n’est pas évaluée, car le résultat
sera forcément false.

=> Avec || : Si la premiére condition est true, la seconde n’est pas évaluée, car le résultat sera
forcément true.

2.7.2) Création de flux

Puisque Stream<T> est une interface et pas une classe, alorx il n’y a donc pas de constructeur.
Voici quelques méthodes pour créer un flux :

1 La méthode stream() de linterface Collection.
1 La méthode stream(T[] tableau) de la classe Arrays pour les tableaux.

50 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

 La méthode d’instance of () de l'inetrface Stream pour un tableau ou un ensemble fini connu
d’éléments.
[La méthode empty() de Stream qui créer un flux vide.

Exemple du cours

import java.util.Arrays;
import java.util.List;
import java.util.stream.Stream;

1

2

3

4

5 public class Mainl {
6 public static void main(String[] args) {
7
8
9

List<String> mots = List.of ("Bonjour", "tout", "le", "monde");
Stream<String> fluxMots = mots.stream();

10

11 Stream<String> fluxMots2 = Stream.of ("Bonjour", "tout", "le", "monde");

12

13 String[] tableau = {"Bonjour", "tout", "le", "monde"};

14 Stream<String> fluxMots3 = Arrays.stream(tableau);

15

16 Stream<String> fluxVide = Stream.empty();

17 }

18}

Il existe d’autres nombreuses classes qui permettent de créer des flux.

O stream() de la classe Optional (flux vide, ou a 1 élément suivant le
contenu de I'Optional)

Remarque J lines(Path p) de la classe java.nio.file.Files (flux des lignes d’'un
fichier)
J list(Path dir) de la classe java.nio.file.Files (flux des fichier d’'un
dossier)

Un flux est destiné a étre utilisé pour produire une autre donnée, ou un effet de bord, grace a une
méthode dite « terminale ».
Ainsi, pour le contenu d’une flux, on peut utiliser la méthode suivante :

1 void forEach(Consumer< 7 Super T> traitement)

Exemple, afficher les éléments contenus dans un flux

i dimport java.util.List;

2 import java.util.stream.Stream;

3

4 public class Main2 {

5 public static void main(String[] args) {

6 List<String> mots = List.of ("Bonjour", "tout", "le", "monde");
7 Stream<String> fluxMots = mots.stream();

8 fluxMots.forEach(mot — System.out.println(mot));

9 }

10 }

Bonjour
tout
le

monde

2.7. GESTION DES FLUX 51

2.7.3) Un flux est un foncteur

Comme les listes en Haskell, les flux Java sont des foncteurs, ainsi on y re-

Remar]
emarque trouve la méthode map.

1 Stream<T>
2 <R> Stream<R> map (Function<? super T, extends R> mapper)

ou dans un premier temps...

1 Stream<T>

2 <R> Stream<R> map (Function<T,R> mapper)
Exemple
i dimport java.util.List;
2 import java.util.stream.Stream;
3
4 public class Mainl {
5 public static void main(String[] args) {
6 List<String> mots = List.of("Bonjour", "tout", "le", "monde");
7 Stream<String> fluxMots = mots.stream();
8 mots.stream()
9 .map (mot — mot.length())
10 .forEach(lg — System.out.println(lg));
11 System.out.println("------------- D) s
12 mots.stream()
13 .map (mot — mot.length())
14 .map(nb — 2 * nb)
15 .forEach(lg — System.out.println(lg));
16 System.out.println("------------- D) s
17 mots.stream()
18 .map (mot — mot.length())
19 .filter(lg — 1g >= 5)
20 .map(nb — 2 * nb)
21 .forEach(lg — System.out.println(lg));
22 }
23}
Explications

» On affiche la longueur de chaque mot

« On récupére la longueur de chague mot et on la multiplie par 2 puis on 'affiche

» On récupére la longueur de chaque mot, on regarde si elle est supérieure ou égale a 5 si C’est le
cas on la garde, on la multiplie par 2 puis on I'affiche

52 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

Dans I'exemple ci-dessus, on a alligné les points, ce n’est pas obligatoire mais
c’est une convention qui est a respecter.
Vous avez remarqué que I'on a utilisé filter sur les flux

Remarque
1 Stream<T>
2 Stream<T> filter (Predicate<? super T> predicate)
Exemple
1 import java.util.Arrays;
2 import java.util.stream.IntStream;
3 import java.util.stream.Stream;
4
5 public class Mainl {
6 public static void main(Stringl[] args) {
7 int[] tab = {2, 4, 1, 3, 9, 10, 6,7};
8
9 Arrays.stream(tab) // génére un IntStream

.filter(n — n % 2 == 0)
.filter(x — x+1)
.forEach(nb — System.out.println(nb));

L e i e
[P I R S)
-~

-

On remarque ainsi que map et filterrenvoient a chaque fois un nouveau flux.
Il est donc possible ,de chainer les traitement sans écrire de boucles, ce qui
rend I'écriture du code bien plus lisible.

De plus imaginons que dans notre exemple du dessus si la liste ne contenait
que des nombres impair alors, I'évaluation paresseuse évite d’exécuter le se-
cond filter sur un flux vide.

Remarque

2.7.4) Proprietés générales sur les flux en Java

O Un flux a usage unique
En gros aprés avoir utilisé un flux pour un traitement, si on veut on faire un autre, il faut donc
recréer un flux

O Un flux est évalué paresseusement (notion expliquée au dessus)

1 ll existe d’autre classes de flux plus efficaces pour certains types simples DoubleStream, IntStream
et LongStream.

* La méthode stream de Arrays crée un flux de types simples si le tableau

passé en parametre contient des valeurs de type simple.
Remarque
 Attention : sur ces classes de flux spécifiques, le map renvoie aussi un

flux du méme type simple

2.7. GESTION DES FLUX 53

2.7.5) Analogie avec les listes de Haskell

Remarque

La méthode Optional<T> findFirst() permet de récupérer le premier élément d’un flux (si
il Nest pas vide).

Méthode head en Haskell

La méthode Stream<T> limit(long n) permer de garder les n-premiers éléments d’un flux
Méthode take en Haskell

La méthode Stream<T> skip(long n) permet de sauter les n premier élément d’un flux
Méthode drop en Haskell

La méthode Stream<T> takeWhile(Predicate<? super T> predicate) permet de garder les
premiers éléments du flux tant qu’ils vérifient le prédicat.

takeWhile en Haskell

La méthode Stream<T> dropWhile(Predicate<? super T> predicate) permet de jeter les pre-
miers éléments du flux tant qu’ils vérifient le prédicat.

dropWhile en Haskell

Toutes ces méthodes sauf findFirst() renvoient des flux, on peut alors les
chainer pour faire différents traitements.

Exemple du cours

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

import java.util.List;
import java.util.Optional;

public class Maind {
public static void main(String[] args) {

List<String> mots = List.of ("Bonjour", "tout", "le", "monde");
System.out.println("------------- ")
long nbElements = mots.stream()

.filter (mot — mot.contains("o0"))

.count () ;

System.out.println(nbElements);

System.out.println("------------- ")
boolean tousO = mots.stream()

.allMatch(mot —mot.contains("o0"));
System.out.println("contiennent tous un o : " + tous0);
System.out.println("------------- ")
boolean unO = mots.stream()

.anyMatch (mot —mot.contains("0"));
System.out.println("au moins 1 mot contient un o : " + un0);
System.out.println("------------- ")
boolean zero0 = mots.stream()

.noneMatch(mot —mot.contains("o"));
System.out.println("aucun mot ne contient un o : " + zero0);
Optional<String> max = mots.stream()

.max ((s1,s2) — sl.compareToIgnoreCase(s2));
System.out.println(max.get ());

54 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

contiennent tous un o : false

au moins 1 mot contient un o : true

aucun mot ne contient un o : false
tout

2.7.6) Meéthodes terminales

Jusqu’a maintenant la seule méthode terminale que I'on connaissait c’est forEach, mais il y en a
d’'autre.

Une méthode terminale est une méthode qui ne renvoie pas un flux.
Remarque Son opposé, la méthode non-terminale elle renvoie un flux, voir les méthodes
de la partie précédante.

* long count() renvoi le nombre d’élément d’un flux
* boolean allMatch(Predicate<? super T> predicate) tout les éléments d’'un flux vérifient le

prédicat ?

* boolean anyMatch(Predicate<? super T> predicate) au moins un élément du flux vérifit le
prédicat ?

* boolean noneMatch(Predicate<? super T> predicate) Aucuns éléments du flux ne vérifient le
prédicat ?

* Optional<T> max(Comparator<? super T> comparator) quel est le plus grand élément du flux ?
* Optional<T> min(Comparator<? super T> comparator) quel est le plus petit élément du flux ?

Exemple du cours

i dimport java.util.List;

2 import java.util.Optional;

3

4 public class Maind {

5 public static void main(String[] args) {

6 List<String> mots = List.of ("Bonjour", "tout", "le", "monde");
7 System.out.println("------------- ")

8 long nbElements = mots.stream()

9 .filter (mot — mot.contains("o"))

10 .count () ;

11 System.out.println(nbElements);

12

13 System.out.println("------------- ")

14 boolean tousO = mots.stream()

15 .allMatch(mot —mot.contains("o0"));

16 System.out.println("contiennent tous un o : " + tous0);
17

18 System.out.println("------------- ")

19 boolean un0 = mots.stream()

20 .anyMatch (mot —mot.contains("0"));

21 System.out.println("au moins 1 mot contient un o : " + un0);

22
23 System.out.println("------------- ")

2.7. GESTION DES FLUX 55

24 boolean zeroO = mots.stream()

25 .noneMatch (mot —mot.contains("o"));

26 System.out.println("aucun mot ne contient un o : " + zero0);
27

28 Optional<String> max = mots.stream()

29 .max ((s1,s2) — sl.compareToIgnoreCase(s2));
30 System.out.println(max.get ());

31 }

32 }

Il'y a aussi des méthodes terminales qui permettent de stocker les éléments d’un flux dans un tableau
ou dans une liste immuable.

* Object[] toArray() stocker les éléments du flux dans un tableau de type Object.

* <A> A[] to Array(IntFunction<A[]> createurTableau) créer un tableau de type A a n cases.
[l faut fournir un expression lambda pour déterminer n.

e List[T] toList() stocker les éléments d’'un flux dans une liste immuable.

Exemple
1 dimport java.util.x*;
2 1import java.util.stream.x*;
3
4 public class ExempleStream {
5 public static void main(Stringl[] args) {
6 /* Exemple 1 : Object[] toArray() =x/
7 Stream<String> fluxl = Stream.of ("A", "B", "C");
8 Object [] tableaul = fluxl.toArray();
9 System.out.println("Exemple 1 : " + Arrays.toString(tableaul));
10
11 /* Exemple 2 : <A> A[] toArray(IntFunction<A[]> createurTableau) */
12 Stream<Integer> flux2 = Stream.of (1, 2, 3);
13 Integer [] tableau2 = flux2.toArray(Integer []::new);
14 System.out.println("Exemple 2 : " + Arrays.toString(tableau2));
15
16 /* Exemple 3 : List<T> tolList () */
17 Stream<String> flux3 = Stream.of ("X", "Y", "Z");
18 List<String> liste = flux3.tolList();
19 System.out.println("Exemple 3 : " + liste);
20
21 /* Test immuabilité de la liste */
22 liste.add("Ww");
23 }
24 }

Exemple 1 : [A, B, C]
Exemple 2 : [1, 2, 3]

Exemple 3 : [X, Y, Z]
UnsupportedOperationException

2.7.7) Flux infinis et évaluation paresseuse

Rappel de cours 16
En Haskell, on peut définir des listes infinies grace a I'évaluation paresseuse :

e [0..] liste des entiers naturels

56 CHAPITRE 2. LES ASPECTS FONCTIONNELS DE JAVA

| - [0, 2, ..]liste des pairs

On peut faire la méme chose avec les flux en Java.

2.7.71) Laméthode iterate

La méthode d’interface iterate(T seed, UnaryOperator<T> f) permet de générer un flux infini :
* seed, est la premiére valeur

* f la fonction qui détermine & partir de seed la valeur suivante

Puisque I'évaluation est paresseuse, lors de la création d’'un flux infini, seuls

Remarque i o . . .
les éléments utilisé au moment de la méthode terminale seront calculés.

Exemple du cours

import java.util.stream.Stream;

1
2
3 public class Mainbter {

4 public static void main(String[] args) {

5 Stream.iterate(0, n— n + 2)

6 .map(n — n * n)

7 .takeWhile(n — n <= 5000)

8 .forEach(n — System.out.println(n));
9

10 }

2.7.8) Tris sur les fulx avec la methode sorted()

La méthode .sort() sans parametre utilise en fait la méthode compareTo du

Remarque type de données du flux.

Exemple du cours

import java.util.List;

1
2
3 public class Main7 {

4 public static void main(String[] args) {

5 List<String> mots = List.of("Bonjour", "tout", "le", "monde");
6 mots.stream ()

7 .sorted ()

8 .forEach(m — System.out.println(m));

9

10 }

Bonjour
le

monde
tout

Ici le tri se fait dans I'ordre lexicographique.

	Bases du langage Haskell
	Paradigme impératif, et rappels
	Paradigme fonctionnel
	Langage fonctionnel - Haskell
	Opérations de base et inférence de type
	Écrire des fonctions sur le terminal de commandes
	Test en Haskell
	Définition de fonctions par filtrage
	Un peu de récursivité
	Les listes en Haskell
	Traitement récursif sur les listes
	Fonction d'ordre supérieur
	Forme curryfiée
	Pliage de liste, foldl et foldl1
	Le type maybe
	Une variante de map, le fmap
	Les monades
	L'opérateur >>=

	Les aspects fonctionnels de Java
	Rétrospective sur l'héritage en Java
	Les interfaces en Java
	Généricité en Java
	Rappels de cours sur la généricité
	Les ArrayList, classe générique
	L'interface générique Collection<E>
	Les HashSet, une autre collection générique
	Zoom sur la boucle << for each >>

	Les lambda-expressions
	4 interfaces fonctionnelles de base
	L'interface Function<T, R>
	Linterface Predicate<T>
	L'interface Consumer<T>
	L'interface Supplier<R>

	La classe Optional
	Construction d'un Optional
	Récupérer la valeur d'un Optional
	Déterminer si un Optional est vide
	Utilisation de map et filter sur un Optinal
	Utiliser un Optional pour éviter de multiples tests à null
	Modifier une donnée encapsulée dans un Optional
	Optional est une monade

	Gestion des Flux
	Généralités sur les flux
	Création de flux
	Un flux est un foncteur
	Propriétés générales sur les flux en Java
	Analogie avec les listes de Haskell
	Méthodes terminales
	Flux infinis et évaluation paresseuse
	Tris sur les fulx avec la méthode sorted()

