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CHAPITRE 1

THEORIE DES ENSEMBLES

1.1) Généralités sur les ensembles

1.1.1) Définitions générale

DEFINITION (ensemble)

On appelle ensemble une collection d’éléments distincts. Chaque élément d’'un ensemble est
unique et ne peux donc apparaitre plusieurs fois.

Exemples
* Lensemble des nombres pairs : {0,2,4,6,...}
* Lensemble binaire : {0,1}
* Les ensembles déja vu jusqu’a aujourd’hui : N, Z, D, Q, R, C

Les éléments d’'un ensemble sont compris entre accolades { et }, chacun
Remarque seéparés par une virgule ..
Un ensemble est souvent représenté par une lettre majuscule.

1.1.2) Diagramme de Venn

On utilise un diagramme de Venn pour représenter les relations entre plusieurs ensembles comme
I'union, l'intersection et les différences.
O Un ensemble est représentée par un cerlce.
 Chaque cercle qui représente un ensemble, prend en compte chaque élément distincts de I'en-
semble.
O Les zones ou deux cercles se chevauchent est appelée intersection.
O La partie extérieure du diagramme (le reste) peut représenter I'univers.
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Dans un diagramme de Venn, toutes les intersections doivent apparaitre

Remarque o . .
q meéme si elles sont vide.

1.1.3) Diagramme d’Euler

Contrairement au diagramme de Venn, la représentation des intersections vide est libre. C’est a dire
que l'on peut les représenter comme a gauche avec le chevauchement de A et B ou alors ne pas
représenter une intersection vide comme a droite avec A et C.

1.1.4) Description par image directe

On considere 'ensemble E suivant :

-

Alors E = {peigne, éponge, lunettes, brosse, téléphone, clé}

Par convention,

Remarque » Les ensembles sont désignés par une lettre majuscule
* Les éléments d’'un ensemble sont représentés par une lettre minuscule

Exemples
Il existe plusieurs "types” d’ensembles :

» Ensemble fini : £ = {0,1,2,3}
* Ensemble infini : R

DEFINITION s

O Un ensembile fini est un ensemble qui possede un nombre d’éléments dénombrable.

O Un ensemble infini est un ensemble qui possede une nombre d’éléments non-dénombrable.
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1.1.5) Descriptions d’ensembles particuliers

D E FINITION (ensembles particuliers)

O Un ensemble vide est un ensemble qui ne possede aucun éléments.
Onnote £ =0 = {}

O Un singleton est un ensemble qui ne possede qu’un seul et unique élément.
On note E = {un_seul}

0 Une paire est un ensemble qui possede deux éléments.
On noyte E = {toi, nous}
0 Lensemble des booléens (vrai/faux) est fini et noté £ = {0, 1}.
1 Un ensemble peut étre défini a I'aide d’'une propriété. Alors pour qu’un élément x appartiennent

a F il faut qu'il valide la condition.

E={zeE|P@)}

ou P est la propriété.

Exemple

On considere un ensemble E et une propriété P(x) ="z = 2k tel que k € Z” que x doit respecter
pour appartenir a E.

On a ainsi :

E={x€Z|xz=2kkeZ}

Et, cet ensemble est celui des nombres pairs car tout nombre pair s’écrit sous la forme 2k avec
k € 7Z, un entier relatif.

Rappel de cours
Un entier relatif peut étre négatif ou positif.

1.2) Application en informatique

En informatique, I'introduction des ensembles n’a pas toujours bien été définie :

* Liste » Tableau associatif + sac (= multiset)
. Pile * Set

1.2.1) Les ensembles en langage C

En C, il n’y a pas de type set natif sans utiliser de bibliothéque externe. Alors, pour pouvoir utiliser des
structures de la méme maniére que des ensembles :

 On utilise un tableau (trié ou non)
» On vérifie nous-méme l'unicité des éléments du tableau
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1.2.2) Les ensembles en Java

Réference : Extrait du cours de Java fonctionnel de Killian Reine (L2 INFO).

DEFINITION (Hashset)

HashSet est une implémentation de l'interface Set<E>. Ce dernier est utilisé pour stocker des
éléments unique.

En gros, il ne permet pas de stocker des doublons.

Pour gérer ses données, HashSet utilise une table de hachage en interne (HashMap).

Caractéristiques principales

* Les éléments d’'un HashSet sont uniques.
Si vous souhaitez ajouter un élément déja présent, ce dernier ne sera pas ajouté

 Les données ne sont pas ordonnées.
« Si on ajoute/supprime un élément, I'ordre peut changer.

Rappel de cours

Puisque HashSet implémente Set<E> et hérite de Collection<E> ainsi, elle propose les méthodes
suivantes :

* add(E elem), remove(Object o), clear( )
* isEmpty( ), contains(Object o)
» et d'autres...

Exemple, Partie spéciale sur Minecraft

» Dans Minecraft, un joueur a un inventaire, mais on veut s’assurer que certains types d’objets
ne peuvent pas étre dupliqués. Par exemple, dans une partie spéciale, un joueur ne peut
avoir gu’un seul exemplaire de chaque outil rare (comme une ” épée de diamant ” , une ”
pioche enchantée ”, etc.).

1 dimport java.util.HashSet;

2

3 public class MinecraftInventory {

4 public static void main(String[] args) {

5 HashSet<String> inventory = new HashSet<>();

6

7 inventory.add ("Epée de diamant");

8 inventory.add("Pioche enchantée");

9 inventory.add("Arc puissant");

10

11 System.out.println("Inventaire : " + inventory);

12

13 boolean ajoutEpee = inventory.add("Epée de diamant");
14 if (lajoutEpee) {

15 System.out.println("Tu as déja une Epée de diamant
16 dans 1’inventaire !");

17 }

18

19 if (inventory.contains("Pioche enchantée")) {

20 System.out.println("Tu as une Pioche enchantée !");
21 } else {

22 System.out.println("Tu n’as pas encore de Pioche enchantée.");
23 }

25 inventory.remove ("Arc puissant");
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26 System.out.println("Aprés suppression, inventaire : " + inventory);
27

28 System.out.println("Nombre d’outils dans 1l’inventaire : " +

29 inventory.size ());

30 +

31}

On tente d’ajouter (ligne 13) l'item ” Epée de diamant ” dans inventory, mais
Remarque cette derniére est déja dans l'inventaire alors, la valeur de ajoutEpee sera
fausse.

Inventaire : ["Epée de diamant", "Arc puissant", "Pioche enchantée"]
Tu as déja une Epée de diamant dans 1’inventaire !

Tu as une Pioche enchantée !
Aprés suppression, inventaire : ["Epée de diamant", "Pioche enchantée"]
Nombre d’outils dans 1’inventaire : 2

Cette parenthese ne sert pour le moment que de culture générale, les apsects

Remarque pousses de la programmation en Java seront abordés en L2 INFORMATIQUE.

1.2.3) Les ensembles en python

Python quant a lui possede les structures set qui permettent de définir des ensembles par extensions.

Exemple

1 L = 1[0, 1, 2, 3, 4]
2 E set (L)
3 #Affichera {1, 2, 3, 4} dans un ordre aléatoire

1.3) Retour sur les ensembles de nhombres

Vous connaissez je pense déja les ensembles suivants depuis le lycée, auquels on a ajouté I'ensemble
des complexes en début d’année en Algebre de base.

e 5 2 . T e 0]

N2 7 %
Z ) D Q R )

g A - ” P
o 2 3 -~

Lensemble des complexes lui possede tous les nombres de R donc tout ceux de Q, de D, de Z et de
N. En gros I'ensemble des nombres complexes englobe tout les autres nombres connus.
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Vous connaissez déja ces ensembles :

* N 'ensemble des entiers naturels
Z 'ensemble des entiers relatifs

» D I'ensemble des décimaux

* Q 'ensemble des rationnels

* R I'ensemble des réels

Remarque

Puis, en Algebre de baseau premier semestre, nous avons ajouté 'ensemble
C des complexes.

1.3.1) Rétrospective sur I'ensemble des hombres pairs

Comme déja évoqué plus tét, 'ensemble des nombres pairs englobe les nombres qui peuvent s’écrire
sous la forme 2k avec k € Z.

Exemple
On souhaite définir cet ensemble mais pour des nombres pairs non nuls et positifs.

» P=2z € N|zxestpair.
P=1{2,4,68,..}

. P:{xeN*\geN*}

s P={xeN*|3Jk e N* |z =2k}

Vous pouvez traduire ces ensembles en francgais et vous verrez qu’au final ils désignent tous la
méme chose.

1.4) Opérations sur les ensembles

1.4.1) Inclusion entre les ensembles

DEFINITION (inclusion)

Soient A et B deux ensembles. On dit que B est inclus dans A si
et seulement si tous les éléments qui sont dans B sont aussi dans

A. On note :
BCA<~—VreB, zeA
= Si B C A, on dit alors que B est une partie de A.
=> Cas particulier :
Remarque ACBetBCA<«~— A=B

La double inclusion (dans les deux sens) implique I'égalité des deux en-
sembles.
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Propriétés de I'inclusion
Soient E, I' et G trois ensembles.
c)CE
Lensemble vide est inclu dans tous les ensembles.
- Reéfléxivité, £ Cc F£
Un ensemble est une partie de lui-méme.
« Antisymétrie ACFCEF=— FE=F
La double inclusion (dans les deux sens) provoque I'égalité de deux ensembles.
* Transitivité, SiF c Fet F c Galors £ C G.

Zoom sur la transitivité

Pour mieux comprendre la transitivite, vous pouvez essayer de maniére illustrée.

Puisque E C F alors on peut tracer un cercle représentant 'ensemble F' et dedans, on trace E
puisqu’il est inclu dans F', on a bien dit que ¢a implique que tous les éléments de E sont dans F.
Vous obtenez le dessin suivant :

F

On peut alors faire la méme chose avec G et F' puisque on a aussi F' C G. Donc on dessiner un
ensemble G dans lequel se trouve F.
Vous obtenez ainsi :

Enfin,
en combinant on obtient le schéma suivant :

On remarque bien que E est alors dans G ce qui implique que £ C G. La propriété de transitivité
vient d’étre montrée de maniere visuelle.
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a bien faire attention

Soit £ = {1,2,3,4,5}

» {1,2} C E car tous les éléments du sous-ensemble appartiennent a E.
Remarque * {1} C E (pour les mémes raisons)

« {1,2} ¢ E, un ensemble ne peut appartenir a un autre, et puis I'élément est
coposé de deux €léments de E

* 1 € E, I'élément 1 est présent dans I'ensemble E ainsi 1 "appartient” a .

Récap des notations :

« = pour I'égalité * ¢ pour la non-appartenance
» C pour l'inclusion + — pour I'implication
» € pour I'appartenance * () 'ensemble vide

1.4.2) Opeérations de création d’ensemble

DEFINITION (union u)

Soient £ un ensemble et A, B deux parties de E.
Lopération d’ union de deux ensembles permet de créer un nouvel
ensemble noté A U B qui contiendra a la fois les éléments de A et

aussi les éléments de B.
Plus rigoureusement :

AUB={r € Aouz € B} AUB

DEF' N|T|ON (intersection N)

Soient F un ensemble et A, B deux parties de E.

Lopération d’ intersection de deux ensembles permet de créer un
nouvel ensemble noté A N B qui contiendra les éléments communs
entre A et B.

C’est a dire que I'ensemble résultant contiendra les éléments qui
sont dans A et en méme temps dans B.

Plus rigoureusement :

S

ANB
ANB={rec Aetx c B}

DEFINITION (diftérence \)

Soient £ un ensemble et A, B deux parties de E.
Lopération de différence de deux ensembles permet de créer un
nouvel ensemble noté A\B qui contiendra les éléments de A en

enlevant les éléments de B.

C’est a dire que I'ensemble résultant contiendra les éléments de A
qui ne sont pas dans B.

Plus rigoureusement :

A\B
AB={zeA|z¢B}




1.4. OPERATIONS SUR LES ENSEMBLES

* La notation A\B se lit "A privé de B

B en commun avec A. On note :
Remarque

A\B=ANB

+ Siz € B alors ¢a revient a dire "z n’appartient pas a B”.

13

» Puisque I'ensemble résultant créé avec A\ B contient en tous les éléments de

DEFINITION (complémentaire )

Soient £ un ensemble et A une partie de E.
Lopération de complémentaire d’'un ensemble et de sa partie per-

met de créer un nouvel ensemble noté Cx(A) ou encore A° qui
contiendra les éléments de E qui ne sont pas dans A.

C’est a dire que I'ensemble résultant contiendra les éléments de E
qui n'apparaissent pas dans A. Ducoup on peut aussi noté £\ A.
Plus rigoureusement :

Cu(A)
Ce(A)={z € E|x ¢ A}
Petit récap des opérations données jusqu’a lors :
Soient F un ensemble et A, B des parties de E.
A est le cercle de gauche, B celui de droite et £ est représenté par un rectangle
ANB BE(A)
A\B:AHF B\A = BﬂCE U (B\A)

Priorité des opérations

@ C est prioritaire sur N et U
N et U sont prioritaires sur C et =
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1.4.3) Propriétés algebrique des opérations d’ensembles

Propositions
Soient £ un ensemble et A, B, C trois parties de E.

O Associativité
(AUB)UC =AU (BUC) (ANB)NC=ANn(BNC)

en gros l'associativité c’est le fait que I'on puisse "déplacer” les parenthéses sans changer
I'issu du résultat.

O Commutativite
AUB=BUA ANB=BNA

en gros la commutativité c’est le fait que I'on puisse changer I'ordre des composantes du calcul
sans pour autant changer le résultat final.

Q Elément neutre
ANE=A AUud=A

en gros un élément est dit neutre lorsqu’il ne change pas Iissu d’un résultat.

Exemple
Dans 'addition, 0 est un élément neutre. Dans la multiplication 1 est un élément neutre.

Q Elément absorbant
AN =10 AUE=F

en gros un élément est dit absorbant lorsque muni d’une opération, elle donne lui-méme.

Exemple
Dans la multiplication 0 est un élément absorbant.
O Distributivite
AN(BUC)=(ANB)U(ANC) AU(BNC)=(AUuB)N(AUC)

Remarque || U et sont distributifs I'un envers l'autre.

O Propriétés du complémentaire

> Cp(E) =0 2 Cp(Cp(4) = A > Cp(A)nA=10
> Cp(0)=FE D> Cp(A)UA=EF
> Cp(AUB) =Cp(A)NCy(B) > Cp(ANB) =Cx(A)ulg(B)

1.4.4) Loide Morgan

Soient £ un ensemble et A, B deux parties de FE.
> AUB=AUB=ANB > ANB=ANB=AUB
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1.4.5) Autres propriétés

textbfPropositions
Soient £ un ensemble et A, B, C trois parties de F.

O Autres propriétés du complémentaire
2> A\B=ANCg(B)=A\(ANB)
a Linclusion

2 (ANB)CAC(AUB
= (ANB)CBC(AUB

~ —

> A=

(ANB)uU (AnCg(B))

D2 ACB<— ANB=A+—= AUB=2EB

D) E FINITION (disjonction d’ensembles)

Soient F un ensemble et A, B deux parties de E.
On dit que A et B sont disjoints si et seulement si :

ANB=10

En gros, deux ensembles sont disjoints si ils n'ont aucuns éléments en commun.

Proposition
Soit A un ensemble et A, ..

=1

., A, n parties de A. Alors :

=1

1.5)

Application informatique des ensembles

SQL JOINS

LEFT JOIN

'

LEFT JOIN EXCLUDING
INNER JOIN

FULL OUTER JOIN

INNER JOIN

RIGHT JOIN

RIGHT JOIN EXCLUDING
INNER JOIN

FULL OUTER JOIN EXCLUDING

INNER JOIN




16 CHAPITRE 1. THEORIE DES ENSEMBLES

1.6 ) Introduction aux applications

DEFINITION (appiication)

Soit £ et ' deux ensembles, On note :

f:E—F
x> f(x)

0 f est une application qui a pour tout = dans E associe un unique élément de F.
0 Lélément est appelé image de z par f(x).
0 On pose y = f(x) ou z est I'antécédent de y par f.

Les applications ont des similitudes avec les fonctions en informatique :
* Une fonction possede un nom (= ici f)

Remarque  Une fonction possede des parametres (= ensemble E)

 Une fonction possede une valeur de sortie (= ensemble F)

» Un code de fonction (= application)

Soient E et F deux ensembles, et soit f : £ — F une application. A B
Lensemble défini par :

{(z,y) e ExFly=f(z)}

est appelé le graphe de I'application [ .

1.7) Notion, Le produit cartésien

DEFINITION (Produit cartésien)

Soit 1, E», ..., E,, n-ensembles.
On appelle Produit cartésien généralement noté F; x Fs x. .. x E,, et définit plus rigoureusement
par :

HEk:{($1 €E1,$2 GEQ,...,aZnGEn)}

k=1 ~ ~~ Z
n—uplet

Autrement dit, le produit cartésien de n-ensembles donne un ensemble de n-uplets ou I'élement
a la position & appartient a 'ensemble E.

Exemple pour illuster
Soit A={1,2,3} et B={5,6,7} alorson a:

Ax B={(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7)}

A la grande différence des ensembles, un n-uplet est une structure

Remarque LT . L iz :
9 mathématiques ordonnee. Ainsi I'ordre des éléments a une importance.



CHAPITRE 2

ELEMENTS DE LOGIQUE

2.1) Bases et propriétés

Le raisonnement logique fais partie des caractéristiques principales des

Remarque mathématiques.

DEFINITION (iogique)

La logique se veut conforme au bon sens, cohérent ou encore rationnel.
On peut dire d’'une chose qui n’est pas logique qu’elle est incohérente, absurde.

Pour démontrer par un raisonnement logique, il va falloir énoncer des propriétés, des propositions et
des théoremes mathématiques.
C’est justement 'objectif de ce chapitre.

DEFINITION (propriéte)

Une propriété est une phrase (déclaration) dont on peut savoir sans ambiguité sa valeur de
vérité:

0 VRAI 0 FAUX
On parle aussi d’assertion en informatique.

Rappel de cours

Une assertion en programmation est un test qui permet au développeur de savoir si les valeurs
retournées par une fonction sont valides ou non.

Exemple
”"Pour tout £ € N, 2k est un nombre pair et 2k + 1 est un nombre impair.”

 en pratique, on énonce uniquement des propriétés qui sont vraies.

 Pour prouver la validité d’une propriété on utilise des démonstrations ce qui
Remarque plus difficile.

» Pour montrer qu’une propriété est périmée, il suffit de trouver un contre-
exemple.

17
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2.2) Les connecteurs logiques

D E FINITION (connecteurs logiques)

Les connecteurs logiques sont des opérateurs utilisées sur les propriétés. lls permettent

d’écrire de nouvelles propriétés a partir de celles qui existent déja.
O négation —  conjonction (et) A  équivalence <—

 disjonction (ou) Vv  implication —=-

2.2.1) Le non-logique —

DEFINITION (négation)

Soit P une propriété.
La négation de la propriété P dite "non-P”, est notée —P.
O Vraie si P est fausse. O Fausse si P est vraie.

P | =P
Exemple

0 1 Prenons la propriété P : "z > 4”. La propriété =P : "z < 4”. Elle est vraie si x < 4
et fausse si = > 4.

1 0

2.22) Leou-logiqueV

DEFINITION (disjonction)

Soit P et Q deux propriétés.
La disjonction de la propriété P et Q dite P ou Q”, est notée P v Q.
(J Vraie si au moins une est vraie. (1 Fausse si les deux sont fausses.

Q
PV QO
ol 1 Exemple
Prenons les propriété P : "z > 4" et Q : "z < 10”. Vraie tant que = > 4 ou
O[O0 1 tant que = < 10.
P
1111

2.2.3) Le et-logique N

DEFINITION (conjonction)

Soit P et Q deux propriétés.
La conjonction de la propriété P et Q dite "P et Q”, est notée P A Q.
0 Vraie si les deux propriétés sont vraies. (1 Fausse si au moins une est fausse.
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Q
PAQ Exemple
011 Prenons les propriété P : "z > 4" et Q : "z < 10”. Vraie tant que = > 4 et
ololo tant que = < 10.
P Ducoup si z = 2 la propriété P A Q est fausse.
1101

2.24) Limplication —

DEFINITION (conjonction)

Soit P et Q deux propriétés.
L implication de la propriété P et Q dite "P implique Q”, est notée P — Q.

(d Vraie si =P Vv Q.
d Fausse si P A O.

Q
P=Q Exemple
011 Soit P : "Il pleut” et Q : "le sol est mouillé” on exprime P = Q : "Si il
0 111 pleut, alors le sol est mouillé”..
P Le fait qu’il pleuve (que P soit vrai) a pour conséquence de vérifier Q.
1 01
Remarque || SiP estvraie alors Q 'est nécessairement.

2.2.5) Lequivalence —

DEFINITION (conjonction)

Soit P et Q deux propriétés.
L’ équivalence de la propriété P et Q dite P équivaut a Q”, est notée P < Q.

1 Vraie si:
=> Les deux propriétés sont fausse.
=> Les deux propriétés sont vraies.

J Fausse si :
=> La valeur de vérité des propriétés est inverse I'une de l'autre.

Q

o1l 1 Exemple
Soit P : "Il pleut” et Q : ”le sol est mouillé” on exprime P <= Q : "Il pleut,

0 110 si et seulement si le sol est mouillé”.

P<— Q

P

1 0|1

Remarque || Si P est vraie (resp. fausse) Q I'est aussi nécessairement.
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2.3) Application informatique

Tables de vérité en informatique

and a.b nand a.b nor a+b or a+b xor a®b
alb|f a|b|f a alb f15 a
01010 01011 01011 0]O0 0 01010
01110 0 0 0 0|1 (1 0
11010 1 11010 1 10 |1 1101
1 1 1 1 0 1

0 111 1 111 [0

=)

ol ="
—_

2.4) Propriétés et priorités logiques

Priorité des connecteurs logiques

» — est prioritaire sur v et A
* V et A sont prioritaires sur —- et <—

2.4.1) Propriétée de N etV

Propriétés
Soit P, Q et R trois propriétés.
O Associativité de N et Vv
(PANO)AR <= PA(QATR) (PVQ)VR <= PV (QVR)
0 Commutativité de A et v
PANQ<— QAP PVQ<< QVTP
1 Eléments neutre
P ANvrai < P PV faur <= P
3 Eléments absorbant
P A faur <= faux P <= vraz
O Distributivité de A et v
PAQVR)<—= (PAQ)V(PAR) PV(QAR)<—= (PVQ)A(PVR)

2.4.2) Propriétés de la négation —

Propriétés

Soit P une propriété.
Q —(vrai) < faux d =(-P) <P Qd PA-P <= faur
O —=(faur) <= vrai Q PV P = vrai
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24.3) Loide Morgan

Soient P et Q deux propriétés, les propriétés suivantes sont vraies.
~(PV Q) < (-P) A (-Q) ~(PAQ) < (=P)V (-Q)

Exemple du cours

Soitn € N

D’aprés la loi de Morgan, I'inverse de la propriété "n n’est pas pair” ou "n n’est pas impaire” est
la propriété suivante :

"n n’est pas pair’ et "n n’est pas impaire”

2.4.4) Propriéetés de — et <—

Propriétés
Soient P et Q deux propriétés.
(P= Q)= ("PV Q) Ainsi =(P = Q) <= ~(-PV Q) =P A-Q
On peut alors réinterpréter I'équivalence comme suit :
(P<—=Q)«— (P= Q) AN (Q=TP)
<~ (-PVQO A(-QVP)

et a l'inverse,

(P<= Q))<= ((P= Q)N (Q=TP))
< ((-PV A A(-QVP))
<~ (PA-Q)V (QA-P)

2.5) Prédicats et quantificateurs

DEFINITION (prédicat)

Un prédicat est une phrase déclarative qui contient une ou plusieurs variables et dont la vérité

dépend des valeurs prises par ces variables dans un ensemble E (appelé domaine).
Pour que le prédicat ait un sens, il faut toujours préciser le domaine FE.

Exemples

1. Soit P(z) défini par : "z est un nombre pair”, avec x € Z.

Le prédicat P(x) est vrai pour x = 2,4.6,. .., et faux pour z = 1, 3,5, . . ..
2. Soit Q(z,y) défini par : "z +y > 0", avec =,y € R.

Le prédicat Q(x,y) est vrai pour des couples (z,y) tels que x + y > 0.
3. Soit R(n) défini par : "n est divisible par 3”, avec n € N.

Le prédicat R(n) est vrai pour n = 3,6,9, ..., et faux pourn =1,2,4,....
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D) E FINITI O [\ (quantificateurs)

Les quantificateurs sont des symboles qui permettent de préciser la portée des variables des
prédicats mis en jeu dans une propriété afin d’écrire des propriétés plus complexes.
Il en existe 2 :

* Le quantificateur universel V

* Le quantificateur existenciel 3

Proposition quantificateur universel
Soit E un ensemble et P une propriété sur les éléments de £
La propriété selon laquelle “pour chaque/tout élément = dans E, P(x) est vraie” est notée :

Vo € E, P(x)

Proposition quantificateur existenciel
Soit E un ensemble et P une propriété sur les éléments de E.
La propriété selon laquelle “pour au moins un élément x dans E, P(z) est vraie” est notée :

dr € E, P(x)
Soit £ = {ay,as,...,a,} un ensembles a n éléments :
* Ve E,P(x)
Remarque P(a1) APlaz) A ... A Play,)
* Jr € E,P(x)
Pla1) VPlaz) V...V P(an)

Proposition
Soit £ un ensemble et P un prédicat portant sur les éléments de E.

e =(Vo € E,P(x)) <= 3z € E,-P(x)
e =(3z € E,P(x)) <= Vz € E,-P(x)

Le plus simple a retenir c’est simplement que -3 =V et =V = 3.

Remarque || Faites attention a I'ordre des quantificateurs!



CHAPITRE 3

ELEMENTS D’ANALYSE REELLE

3.1) Définitions générales

DEFINITION (analyse)

L’ analyse représente la branche d’étude du continu en mathématiques.

Exemple d’analyses

» Analyse des nombres réels et complexes
+ Suites numériques, fonctions numériques

Lanalyse est utilisée dans différents domaines en informatique comme les sta-

Remarque \ tistiques et les probabilités (IA par ex.).

Schéma des ensembles connus

On voit tres bien sur le schéma que I'ensemble des réels R englobe tous les
Remarque autres ensembles, ainsi N C R par exemple.
En gros tous les éléments de N sont aussi dans R.

23
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3.2) Les partiesde R

Rappel de cours
Partie d’'un ensemble
Soit A et B deux ensembles, on dit que "B est une partie de A” si et seulement si tous les éléments

de B appartiennent a A.
Pour faire la liaison avec vos connaissances du chapitre 1, on note B C A.

DEFINITION (diftérence)

Soit £ un ensemble et A une partie de F.
Lensemble E'\ A représente I'ensemble des éléments de E privé des éléments de A.

E\A={z € E|z¢ A}

et se lit "z dans E tel que x n’appartient pas a A”.

DEFINITION (0 exciu)

Soit £ un ensemble.
Lensemble E* représente 'ensemble des éléments de £ privé de 0.

Er=E\{0} ={z € E |z #£0}

et se lit "z dans E tel que x est différent de 0.

DEFINITION (ees positis)

Soit E.
Lensemble E, représente 'ensemble des éléments de E positifs.

E,={z€E|z>0}

et se lit "z dans E tel que x est plus grand ou égal a 0”.

DEFINITION (s négatits)

Soit £ un ensemble.
Lensemble E_ représente 'ensemble des éléments de F négatifs .

E,={ze€E|z<0}

et se lit "z dans E tel que x est plus petit ou égal a 0”.

Ainsi si je souhaite représenter 'ensemble des positifs stricts je peux le
représenter comme suit :
Remarque Soit E un ensemble

E:=EN\0}={z € E|z>0}
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3.3) Lensemble des rationnels Q

DEFINITION (g les rationnels)

Lensemble des rationnels est défini par :

Q= {S |p € Z,q € N*,pgcd(p, q) = 1}

ou

O pged(p, q) est le plus grand diviseurs commun de p et de q.
0 La condition pgcd(p, q¢) = 1 signifie que les entiers p et ¢ sont premiers entre eux (I'unique
diviseurs commun de p et g est 1).

Rappel de cours

Plus grand commun diviseur

Soitn € E.
C’est le plus grand k € N tel que k divise k-fois n.

Exemple
On cherche le pged(30,12) décomposons 30 et 12 en produit de nombres premiers.

¢ 12=2xXx6=2x2x3
e 30=2x15=2x3x5

Ainsi, pgcd(30,12) = 2 x 3 = 6.

Un nombre rationnel est un nombre qui peut s’écrire sous la forme § avec a, b

Remarque ‘ deux entiers et b # 0.

3.3.1) Les nombres irrationnels R\Q

D) E FINITION (nombre irrationnel)

Un nombre irrationnel, a I'inverse d’un rationnel est un nombre qui ne peut pas étre écrit sous
forme de quotient 7.

Remarque || Les nombres irrationnels incluents les nombres a virgule infinie.

Propriété
Lensemble des réels noté R inclu tous les nombres entiers et décimaux y compris les irrationnels.
Ainsi, les irrationnels représentent en fait 'ensemble des réels privé des nombres rationnels.

C’est pour cette raison que I'on note généralement I'ensemble des irrationnels :

R\Q
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3.4) Raisonnements mathématiques

3.4.1) Genéralités sur les raisonnements

D E FINITION (raisonnement mathématiques)

On appelle raisonnement mathématiques un processus logique qui consiste en une suite

d’idées ou d’arguments de maniéere cohérente (= logique) permettant d’arriver a une conclusions
a partir d’hypotheses faites au préalable ou de faits énonceés.

Exemple
Vous devez déterminer si vous allez prendre votre parapluie pour sortir.

1. Hypothése 1 : Si il pleut, il est nécessaire de prendre son parapluie
2. Hypothese 2 : La météo indique qu’il pleut aujourd’hui

Par un raisonnement de bon sens, puisque la météo a indiqué qu’il allait pleuvoir alors vous
prenez votre parapluie.

3.4.2) Raisonnement par I'absurde

DEFINITION (rabsurde)

Soit P une propriété.
Pour montrer la propriété a I'aide d’'un raisonnement par I’'absurde ,

 On suppose que —P est vraie
1 On montre que cette situation est impossible

Exemple

Soit P la propriété P : "n* est pair alors n est pair”.
Par I'absurde :

Supposons que si n? est pair alors n est impair.
Puisque n est impaire alors 3k € Z tel que n = 2k + 1
Ainsi, n? = (2k + 1)? = 2(k* + 2k) + 1

Puisque k € Z alors k? + 2k € Z

On peut alors poser K = k*> +2k € Z

Ainsi n? = 2K + 1 ol k € Z ce qui indique que n? est impair.
Ce qui est absurde car on a supposé n? pair.

Ainsi la propriété P est vérifiée par I'absurde.

n? pair implique n pair
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Exemple

Soit P la propriété ”v/2 est un nombre irrationnel”

Par I'absurde,

Supposons que /2 est un nombre rationnel.

C’est a dire que v2 € Q.

Puisque /2 est un nombre rationnel alors par définition de I'ensemble Q :

ﬂGQ:HaGZ,HbEZ*|\/§:%,pgcd(a,b):1

En frangais puisque /2 est un rationnel alors il existe deux entiers a et b (premiers entre eux)
avec b # 0 tel que v2 = .
Isolons p :

wﬁl
SETOIINY
1 Il
=12

I
S

D’aprés I'exemple précédant, v*> € Z donc 2b? est pair.
Ainsi a? est pair, ce qui implique que « est pair.

D’ou
Ik eZ|a=2k
Ainsi, on peut déterminer b
20? = a?
20 = (2k)?

Alors b* est pair, implique b pair.

Ainsi on a a, b deux nombres pair, il ont donc un plus grand commnun diviseur qui est 2 ce qui
contredit I'hypothese pgcd(a,b) = 1.

D’ou par I'absurde, la propriété v/2 € R\Q est vraie.

3.4.3) Raisonnement par contraposée

DEFINITION (rabsurde)

Soit P une propriété.

Pour montrer la propriété a I'aide d’'un raisonnement par contraposée,
0 On détermine —P
1 On montre qu’elle est vraie
0 On en déduit alors que P est vraie
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Exemple

On reprend la proposition de I'exemple précédant.
Soit P := n? pair, alors n pair”.

Par le principe de contraposée,

On doit montrer que :

Si n est impair alors n? est impair, n € Z

Puisque n est impair alors 3k € Z tel que n = 2k + 1
Ainsi :

n? = (2k + 1)?
=2k* + 4k + 1
=2(k* +2k) + 1

Puisque k € Z alors k? + 2k € Z par conséquent on peut poser K = k? + 2k € Z
Ainsi on a

n? = 2(k* + 2k) + 1
=2K+1

= impair

La contraposée est alors vraie pour n € Z.
D’ou P est vérifié grace au principe de contraposé.

3.5) Intervalles de I'ensemble R

DEFINITION (Intervalles bornés, intervalles non bornés)

Soient a,b € R avec a < b.

0 On appelle intervalle borné les éléments de la forme
D [a;b] ={r eR|a<z<b}
[a;0[={x €R |a <z < b}
D Ja;b)={xr €R|a <z < b}
D Jasbj={r €eR|a <z <b}

0 On appelle intervalle non borné les éléments de la forme

Ii)[a—koo[ {reR|a<z}
D Ja;+oo[={r €R|a <z}
= |- ooa]—{xGR|a>x}
D | —oo,a[={r€R|a>z}

O a,b sont les bornes finies de l'intervalle

d —oo, +oo sont les bornes infinies de I'intervalle
 Si une des bornes finie d’'un intervalle est compris dans l'intervalle alors on dit que ce
dernier est ferme.

[ Alinverse, si aucune des bornes finies ne sont contenues dans l'intervalle il est dit ouvert.
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* Les intervalles [a; b] sont appelés segments.
* Lorsque a < b alors :

Remarque y
9 o b— a est la longueur de l'intervalle

o GT“’ est le centre de lintervalle

Propriétés admises

Reprenons les parties de R évoquées il y a quelques parties :
s R*={z e R |z #0} =] — o0;0[U]0; +00]
*R_={zeR|z<0}=]—00;0]
* R ={zxeR|z>0}
* R* ={zx eR|z<0}=]—00;0]
* Ry ={zeR|z>0}=]0;+o0[

Remarque || [1;+4o0[estun intervalle fermé, alors que ]1; +oo] est un intervalle ouvert.

3.6) Eléments particuliers d’une partie de R

DEFINITION (majorant)

Soit A une partie non-vide de R (A # ().
On appelle o« le majorant de A si:

Ve e A r <«
Si A admet un majorant elle est dit majoreée.

(A majorée) <= Ja e R |Vx € A, z < «
N’

A est majorée par

DEFINITION (minorant)

Soit A une partie non-vide de R (A # ().
On appelle « le minorant de A si:

Ve e A T >«
Si A admet un minorant elle est dit minorée.

(Aminorée) <= Ja e R | Ve € A, x > «
—_————

A est minorée par o

Remarque || A estdite bornée sielle est a la fois minorée et majorée.

Proposition
Il peut arriver que des parties possedent une infinité de minorants (resp. majorants).
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Exemple
Considérons A = {1,2,3} une partie de N.
Par définition de majorant et de minorant :

* x € RminorantsivVy € A, x <y
* 2’ € RmajorantsiVy € A, 2’ > ¢/

Le plus petit élément de A est 1 est le plus grand 3. Ainsi tout = > 3 est un majorant et tout z < 1
est un minorant.

D’ou le fait gqu’il y a comme minorants | — oo; 1] et comme majorants [3; +oo[. |l en existe donc
une infinité.

Propositions, cas particuliers
Soit A une partie non vide de R.

» Si A est majorée alors elle admet une infinité de majorants.
* Si A est minorée elle admet une infinité de minorants.

Soit B =)
Alors minorants = majorants = R

Remarque || N n’estpas majorée. R et Z ne sont pas minorés ni majorés.

3.7) Preuve d’une propriéte

3.7.1) Propriéte universelle

DEFINITION (preuve)

Soit £ un ensemble et P un prédicat sur les éléments de E.
Considérons la propriété

Vr € E, P(x)

Pour montrer que P est vraie

1. Choisir un élément de £ de maniere arbitraire
2. Puis on montre que P(z) est vraie

Le raisonnement commencera ainsi :

Soitr € E.
Montrons que la propriété P(x) est vraie.
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Exemple
Soit A = [—1; 3]
Montrer que 5 est un majorant de A revient a montrer que

Vee A,z <5

Soitz € A

Montrons que = < 5

Puisque = € A, alors —1 <z < 3et3 <5donctoutzr € A <5.
5 majore bien 'ensemble A.

3.7.2) Propriété existentielle, preuve constructive

D) E FINITI O [\ (preuve constructive)

Soit £ un ensemble et P un prédicat sur les éléments de E.
Considérons la propriété existentielle suivante :

Jz € E tel que P(x)

« Une premiére solution serait de trouver un élément dans E puis de montrer qu’il satisfait la
propriété.

Dans ce cas on commencera par :

Posons x = . ..
Montre que pour x € E, la propriété est vraie

Remarque || Cette méthode fonctionne bien lorsque la construction de x n’est pas trop dur.

Exemple
Montrons que A = {t*+ 1 | t € R} est minorée.
Cela revient alors a montrer que

JacA|VzeAx>a

Une analyse rapide de A permet de déterminer de téte des minorants.
Posons a = 0

Montrons que 0 est un minorant de A

Soitz € Aalors 3t e Rtelque z = t2 + 1

Or

t2>0
24+1>1>0

Ainsi z > «. Donc a est un minorant de A;
A est belle est bien minorée.
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3.8) Retour sur majorant et minorant

La démonstration sera revue lors des séances de tutorats avec d’autres
exemples.

DEFINITION (non majoration, non minoration)

Soit A une partie de R, d’ailleur avec le chapitre 1 sur les ensembles, vous savez que I'on peut
noter A C R.
D’apres la négation des propriétés de majorant et de minorant :

Remarque

O A n’est pas majorée si

Vm € R, alors 3z € Atelque x > m

O A n’est pas minorée si

Vm € R, alors 3z € Atelque x <m

Exemple, preuve de la non majoration

Soit A={t*+1]|teR}

Montrer que A n’est pas majorée revient a montrer que pour tout m trouve, il existe toujours un
élément de A plus grand que m.

VmeR,JxeAlz>m

Soit m € R.

Montrons qu'il existe = € A tel que z > m

Il est impossible vu la constitution de 'ensemble de trouver de téte un = € A tel que x > m, il
faut donc choisir un x qui dépend de m.

Posons z = m? + 1

Par le principe de contraposée montrons que x € A etz >m Comme m ¢ Ralors m>+1¢€ A
Ainsi, z € A

Siz=malorsonam=m?+1

m?—m+1=0

En calculant A on trouve A = —3 < 0, on en déduit que m? — m + 1 est strictement positif (vous
pouvez effectuer le tableau de signes).

Alors m?> —m+1>0<=m?+1>m

Donc A nadmet pas de majorant.
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w

DEFINITION (prouver I'implication, I’équivalence)

Soient Pet Q deux propriétés.
(d Pour montrer P — 9

o On suppose que P est vraie
o On montre que Q I'est aussi

d Pour montrer P <— Q

o On montre P = Q
o Puis on montre Q@ «<— P

3.9) Extremums des parties de R

D) E FINITION (élément maximum)

Soit A # (), une partie de R.
On note a € R appelé plus grand élément ou élément maximum de A si:

ae A
et
Vee A, z<a

Autrement dit, o est I'élément maximum de A si :

O « estun élément de A
O Tous les autres éléments de A sont plus petit ou égal a «

Il est noté mazx(A) = a.

D) E FINITION (eélement minimum)

Soit A # (), une partie de R.
On note o € R appelé plus petit élément ou élément minimum de A si:

ae A
et
Vee A, >«

Autrement dit, o est I'élément minimum de A si :

O « estun élément de A
O Tous les autres éléments de A sont plus grand ou égal a «

Il est noté min(A) = «a.




34 CHAPITRE 3. ELEMENTS D’ANALYSE REELLE

Propriéte, preuve d’unicité d’'un extremum.

Le but de cette démonstration était de prouver qu’il n’y a qu’un maximum (resp. minimum).
Soit A C R (une partie de R).

Supposons que A possede au moins un maximum.

au moins : un implique 1 ou plus de maximum.

Soient a; et a, deux maximums de A.

Alors :
ap €A ay €A
et — a1 < ay et — as < oy
ay majore A a; majore A

Ainsi le fait que a; < as A ay < «; implique nécessairement que a; = a»
Ainsi, A en prenant deux maximums distrincts de A on a montré qu'ils étaient égaux, d'ou A
n‘admet qu’un maximum.

D) E FINITION (borne inférieure)

Soit A une partie de R et a € R.
On note a € R une borne inférieure de A si

a est un minorant de A
a=inf(A) < < et
« est le plus grand minorant de A

La borne inférieure de A est notée inf(A)

D E FINITION (borne supérieure)

Soit A une partie de R et a € R.
On note a € R une borne supérieure de A si

a est un majorant de A
a = sup(A) < ¢ et
« est le plus petit majorant de A

La borne supérieure de A est notée sup(A)

* Une borne n’est pas forcément un élément de A
Remarque » Si A possede un plus grand élément, c’est aussi la borne suppérieure de A.
» Si A possede un plus petit élément, c’est aussi la borne inférieure de A.

Exemple, Soit A = [—1; 3]
* Le plus petit élément de A est —1, alors c’est aussi la borne inférieure de A.
On note min(A) =inf(A) = —1
* Puisque l'intervalle est ouvert, il ne possede pas de plus grand élément. Mais, tout élément

supérieur ou égal a 3 est un majorant.
Ainsi le plus petit des majorants est 3 qui est donc la borne supérieure, on note sup(A) = 3.
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Remarque || Siles borne existent, elles sont uniques.

Proposition
« Tout partie non-vide et majorée de R possede une borne supérieure.
« Toute partie non-vide et minorée de R possede une borne inférieure.

3.10) Opérations sur les réels

DEFINITION (partie entiére)
Soit z € R.

La partie entiére du nombre = notée E(x) ou |z | vérifie :

Ez)eZetE(z)<z< E(z)+1

Propriétés, partie entiere
*VeeR,o—-—1<E(x)<uz
« E(x) est le plus grand entier inférieur ou égal a .
« Soitn € Z. Alors Vx € [n;n+ 1, E(x) =n

DEF| NITION (valeur absolue)

Soit z € R.
La valeur absolue du nombre z, notée |z| vérifie :

T siz>0
2| =

—x Siz <0

Propriété, valeur absolue

Vr,y € R
* |z| >0, alors |z| = maz{z, —x} * |[z|=0alorsz =0
* Va2 = g * | =l =]
*Va>0,|z]<a<= —a<z<a o |xy| = |z||y|

* || > 0, valeur absolue positive lz +y| < |z| + |y| inégalité triangulaire

Exemple

| =2 =12|=2



CHAPITRE 4

LES SUITES

4.1) Généralités sur les suites

4.1.1) Rappels et bases sur les suites

» Soit f : R — R une application, on dit qu’elle est continue.

Remarque » Soit u : N — R une application qui prend comme valeurs des entiers naturels
et renvoi un réel, on dit que I'application est discrete.

DEFINITION (suite)

Soit £ un ensemble alors,
toute application de la forme u : N — E est appelée suite d’éléments de E.

Une suite se note (u, ) ey OU :
Q u, est le terme général de la suite
O n € N est appelé le rang (ordre, ou indice) de la suite
0 u(n) = u, est le terme de rang n

Une suite (u,).en €St une donnée contenant des éléments de E dans un ordre
précis correspondant a un n-uplet de la forme :

Remarque
q (u07u1a"'7un)

ou u,, estle (n+1)° terme de la suite (u,),en. Puisque 'on commence an = 0.

Propriété du début d’une suite
Il peut arriver que certaines suites soient définies a partir d’un certain rang, par forcément 0.

Lensemble des rangs se trouvent ainsi dans 'ensemble N, = {n € N | n > p}, en francais,
l'indice n est un entier suppérieur ou égal a p.

Cette suite ce note alors (u,)n>p = (Un)nen,

Ainsi, le premier terme de la suite sera noté w,,.

36




4.1. GENERALITES SUR LES SUITES 37

Soit £ ¢ N alors,

Remarque  Toute suite u : E — R est appelée suite réelle.
« Toute suite u : E — C est appelée suite complexe.

Exemple
La suite (u,),en définie par :

uN—>M2(]R)

n+—>u, =

Ainsi, cette suite n’est pas une suite numérique!
Puisque les éléments de « ne sont ni dans R ni dans C mais dans les métrices a coefficients
réels de taille 2 x 2.

Rappel de cours

Lensemble K
Soit x € K alors = est soit un réel (z € R) ou soit = est un complexe (x € C). acquis du module
"Algebre de base”

Exemples

+ Soit ¢ € K alors la suite (¢,).en €st appelée suite constante.

« Soit f : n — n? + 1 une application de N a valeurs dans N. Cette derniére est une suite réelle
ou :

o Elle est notée (n? + 1),en
o Les premiers termes de la suite sont (1,2, 5, 10, .. .)
o Le terme de rang 3 estdonné par us = 10carus =3>+1=9+1= 10

* Soitg:n+— % une application bien définie si n # 0 ainsi, f est une application de N* a valeurs
dans R.
Sous forme de suite, on note (i, )nen+ = (in)p>1 = + OU ug = 1 €tus = £
La suite n’est pas définie pour n = 0, le résultat n’existe pas, ainsi le premier terme est i;.
 Soitr:mn— vn—2
Par définition, \/x est définie Vx € R, ainsi r,, est définie Vn > 2.
* La suite (:"),en est une suite complexe de premiers termes (1,i,—1,—i,...).

Proposition - égalité de deux suites

Soit (u,)nen €t (v,)nen deux suites numériques.

On dit que u et v sont égales si et seulement si tous leurs termes sont égaux un a un.
On note :

((Un)nen = (Vn)nen) <= (VR €N,  u, =v,)

On peut généraliser cette définition a toute les suites commencgant a un indice

Remar
emarque || gitérent de 0.
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Exemple
Déterminer si deux suites sont égales

Soit
1 1
().t ()
N/ pen n+1/, cx

En vrai, je suis d’accord avec vous, de vue ces deux suites ont I'air égales... Mais en fait non!

1 1 1
(2), =1 (), =2
n/ n—+1 1 2

Les deux termes sont différents alors qu’ils sont tous deux de rang 1, ainsi les suites du dessus
ne sont pas égales.

4.1.2) Opérations sur les suites

Propriétés - Opérations sur les sommes

Soient (u,)nen €t (v,)nen deux suites et A € R alors,
« Somme : (un)nen + (Vn)nen = (Un + Vp)nen

* Produit par un scalaire : A(uy,)nen = (Aty )nen

o Produit : (u,)nen X (Un)nen = (Un X Vp)nen

4.2) Les suites récurrentes

4.2.1) Suite définie par récurrence

D) E FINITION (suite défine par récurrence)

Soit £ un ensemble et f : E'+— E une application.
On considere la suite (u,),en définie par :

uy € B, etvn e N, u,1 = f(uy)

Alors (u,,)nen est dite définie par récurrence.
Autrement dit, une suite est définie par récurrence lorsque :
 Le ou les premiers termes sont définis (= donnés)
* Les termes suivants sont définis en fonction du ou des précédants

Exemple, La suite de fibonnacci
Soit (u,)nen la suite ou

ug=0,u; =1etuy1 =u, +up_1

est la suite de fibonnacci, définie par récurrence.
Ainsi ses premiers termes sont :

(0,1,1,2,3,5,8,...)
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4.2.2) Notion de suite arithmétique

DEFINITION (suite arithmétique)

Soit (uy,)nen UNE Suite.
On dit que u, est une suite arithmeétique lorsque chaque terme se déduit du précédant en
ajoutant toujours le méme nombre. Généralement on note ce nombre r € R et on I'appelle la

raison de la suite.
On note plus rigoureusement :

up R, reR et VneN, w1 =u,+r

ouona:

4 r est la raison de la suite
O wug est le premier terme de la suite

O La raison représente en fait la différence entre deux termes consécutifs.

Ainsi, on note :
Remarque

"= Upt1 — Up

Propriété - Variation de suite arithmétique

Soit (u,).en Une suite arithmétique de raison r € R alors :
» Sir > 0 alors la suite est croissante.
» Sir < 0 alors la suite est décroissante.
» Sir =0 alors la suite est constante.

Propriété - Terme genéral d’une suite arithmétique
La définition des termes suivants dans une suite arithmétique dépend du premier terme de la
suite :

» Si ug est le premier terme alors u,, = ug+n x r

» Si u; est le premier terme alors w,, = u; + (n — 1)r

» En généralisant le second aspect,
Si u, est le premier terme avec p € N alors u,, = u, + (n — p)r

Exemple
Soit (u,).en Une suite arithmétique de raison r = 2 et de premier terme uy = 3.
Alors :

> U, =ug+nr=3+2n
> un+1:un+2

u1:u0+2><1:3+2:56tDUISu10:u0+1OX2:3+2O:23

On peut donc déterminer les premiers termes de u,, facilement.
Et, puisque r > 0 alors la suite (u,).en €St croissante.
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DEF' N|T|ON (Somme des n-premiers termes)

Soit (u,)nen UNe suite arithmétique de raison r € R et de premier terme u, avec p € N alors, la
somme des n—premiers termes de la suite ici notée S, est donnée par :

n
Su, = E(up + Un)

Dans la propriété précédante, on a vu que si le premier terme est v, alors u,, = u, + (n — p)r
Ainsi en substituant u,, :

n
Sun = E(up + Un)
n
= "yt + (1= )
n
= 22, + (0~ pr)

4.2.3) Notion de suite géométrique

D E FINITION (suite géométrique)

Soit (uy,)nen UNE Suite.
On dit que u, est une suite géométrique lorsqye chaque terme se déduit du précédant en
multipliant toujours par le méme nombre. Généralement on note ce nombre ¢ € R et il est

appelé raison de la suite.
D’une maniere plus rigoureuse, on note :

u €R, qgeR etVneN, w1 =qXxu,

ouona:

¢ la raison de la suite
O ug le premier terme de la suite

O La raison représente le quotient entre deux termes consécutifs.
On note alors :
Remarque
un+1

Unp

Propriété - Variation de suite géométrique
Soit (u,)nen UNe suite géométrique de raison ¢ € R alors :
» Si|q| > 1 alors la suite diverge.
» Si|q| < 1 alors la suite converge vers 1.
» Si g =1 alors la suite est constante.
» Siq = —1 alors la suite oscille entre deux valeurs.
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Propriété - Terme général d’une suite géométrique
La définition des termes suivants dans une suite géométrique dépend du premier terme de la
suite :

» Si ug est le premier terme alors u,, = uy X ¢"

» Siu, est le premier terme alors u,, = u; x ¢"!

» En généralisant le second aspect,
Si u, est le premier terme avec p € N alors u,, = u, x ¢"7

Exemple
Soit (un)nen UNe suite géométrique de raison g = 3 et de premier terme uy = 2.

Alors :
> u, =2 x 3"

> Uppp = Up X 3
Uy = ug X 3 =2 x 3 =6etducoup u;p =2 x 3% =2 x 59049 = 118098

On a donc réussi a déterminer les termes suivants facilement.
Et, puisque |¢| = 3 > 1 alors la suite diverge.

Rappel de cours

Notion de divergence
Lorsque I'on dit qu’une suite diverge en gros ¢a veut dire que les termes un a un s’éloignent
infiniment d’une valeur fixe au fur et a mesure qu’on avance dans la suite.

> Divergence vers +oco
> Divergence vers —oo

DEFINITION (Somme des premiers termes d’une suite géométrique)

Soit (u,)nen UNe suite géométrique de raison g € R et de premier terme u, avec p € N alors la
somme des n—premiers termes de |a suite notée ici S, est donnée par :

a Si g =1, la suite est croissante
Su, =N X Up

0 Siq # 1 alors la somme de sn—premiers termes est donnée par :

Soit (u,)nen la suite définie par :
@) Ug = 1
Remarque OVneN, up,=nxu,

Cette suite n’est pas récurrence car la fonction f dépend de n et de u,,.
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Exemple

1
Vn € N, Uptr = — — 1

n

Lapplication de récurrence f sous-jacente est donnée par
f:R*—R

1
r— ——1
x

Or, ici ug = 1 et u; = 0 il est donc impossible de définir u,.

Il faut vérifier par une preuve par récurrence que Vn € N la fonciton f(u,) a
ses valeurs dans I'ensemble défini.

D) E FINITI O [\ (Preuve par récurrence)

Considérons une propriété P(n) pour tout n € N, et soit ny € N.

Remarque

1. Définir la propriété P(n)
Soit P(n) la propriété ” . ..".
2. INITIALISATION
Fixer un nq et montrer que P(ng) est vraie.
On pose ng = ..., montrons que la propriété P(n,) est vraie.
3. HEREDITE
En supposant que pour un n > ny fixé, la propriété P(n) est vraie. Montrer que la propriété
P(n+ 1) est elle aussi vérifiée.
Soit n > ny, on suppose la proprieté P(n) vraie. On chercher a montrer que la propriété
P(n+ 1) l'est également.
4. CONCLUSION
Une phrase pour conclure en disant que la propriété P(n) est vraie pour tout n > ny.

Exemple
Ug =10

Considérons : u,, = 1
Up+1 = 1 i

Uy — 1
Montrons par récurrence que Vn € N, u,, > 1.
1. On pose P(n) = "u, > 17
2. Pourn =0, ug = 10 > 1 alors la propriété est vraie pour n = 0

3. Supposon P(n) vraie montrons P(n + 1)
Par hypothese de récurrence, u,, > 1, d'olu, —1 >0

1
>0 Up1 =1+ >0+1=1
Uy — 1 Uy — 1
Ainsi, P(n + 1) est vraie.
4. D’apres le principe de récurrence, on a montré que Vn € N, u,, > 1.
Donc la suite (u,)nen €St bien définie.
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4.2.4) Ordre d’une suite récurrence

DEFINITION (ordre)

Soit (u,)nen UNe suite définie par récurrence. Le nombre de termes qui construisent la suite est

appelé ordre de la suite récurrente.

Exemple, Suite de Fibonnacci
Soit (uy,)nen la suite ou

ug=0,u; =1etuyy1 = up +up_1

Lordre de cette suite est de 2, car ug et u; construisent la suite.

4.3) Propriétés sur les suites

4.3.1) Suites monotones

Propriétés - Monotonie de suite
Soit (uy,)nen UNE suite.

» (u,)nen €St dite croissante si

VneN, u, <y

» (u,)nen €st dite strictement croissante si

VneN, u, <uUpi

» (un)nen €st dite décroissante si

VneN, u, > up

» (un)nen €st dite strictement décroissante si

VneN, u, > upi

DEFINITION (suite monotone)

Soit (u,)nen Une suite, elle est dite monotone si et seulement si elle respecte une des conditions
suivantes.

1 Elle est constante

 Elle est croissante

O Elle est décroissante
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O Une suite est dite constante ou stationnaire si tous ces termes sont égaux,
onnoteVn e N, w, =ty

O La notion de suite complexe croissante (resp. décroissante) n’a aucun sens.
O La notion de monotonie peut étre valide a partir d’un certain rang.

Remarque

Proposition - Etudier la monotonie d’une suite
Soit (uy,)nen Une suite réelle.
Il existe trois méthodes pour déterminer la monotonie d’une suite :

» Vn € N, étudier le signe de u, 1 — u,
unJrl

» Vn € N, vérifier que u,, > 0 et comparer par rapport a 1.

n

» Etudier les variations de la fonction f sous-jacente : u,, = f(n)

Exemple
Soit la suite (u,)nen = n°.
Nous allons étudier le signe de u,, .1 — u,

> un:n2

> Upy1 = (n + 1)2
Alorson a :

Uns1 — Un = (n + 1) — n?
=n?>+2n+1-n?
=2n+1

Etudions le signe du résultat :

Par définition, n € N alors n > 0

Ainsin >0<«<=2n>0<«<=2n+1>1>0.
La suite (u,),en €St donc une suite croissante.

Exemple
Soit ¢ > 0 et (¢")nen-
Puisque ¢ > 0, alors Vn e Nona¢® > 0

De plus,
¢ g xq
n o n - q
q q
Ainsi,
O Si0 < ¢ < 1, alors la suite est décroissante
O Si ¢ =1 alors la suite est stationnaire
O Siq > 1, la suite est croissante
Rappel de cours
Propriété sur les puissances
ot = 3% x 2t
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4.3.2) Majoration et minoration d’une suite

DEF| NITION (suite majorée, suite minorée)

Soit (uy,)ren Une suite réelle.

O La suite (u,).eny €St majorée si il existe M € R tel que, pour tout n € N, u,, < M.
(u, majorée) <= IM R VneN, wu,<M
O La suite (u,).en €St minorée si il existe M € R tel que, pour tout n € N, u,, > M.

(u, minorée) <—= IM eR VneN, wu,>M

Exemple
. 1
Soit u,, = avecn > 0
n+1

Etudions cette suite.
Puisque n > 0 alors n + 1 > 1 ainsi, #1 < 1 ce qui implique que la suite est majorée par 1.

DEFINITION (suite bornée)

Une suite numérique (u,).en est dite bornée si
da>0, VneN, |ul<a

Autrement dit imaginons deux barrieres, o et —a. Pour qu’elle soit bornée, la suite ne doit pas
dépasser l'intervalle compris entre ces deux barrieres.

Rappel de cours

Lien majorée, minorée
Une suite bornée est minorée et majorée.

O Pour une suite complexe, |u, | correspond au module.

O Pour une suite réelle, on dit qu’elle est bornée si elle est majorée par o et

Remarque minorée par —a.

O Pour une suite réelle minorée par m et majorée par M, elle est bornée par
max(|m|, | M]).

Exemple
La suite (2),cn est bornée car majorée par 1 et minorée par 0.

Exemple

La suite (vn? + 1 — n)yen
>nP+1<n’+2n+1=(n+1)>?
>dou0<yvn2+l-n<vn2+2n+l-n=(mn+1)-n=1
> Ainsi, 0 <vn2+1-n<1
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Exemple
La suite (sin(n))nen
VneNonao < |sin(n) <1

Proposition - Opération de suites bornées

» La somme de deux suites bornées est une suite bornée.
» La différence de deux suites bornées et une suite bornée.
» Le produit de deux suites est une suite bornée.

4.4) Nature d’une suite

4.4.1) Limite d’une suite

DEFINITION (imite)

Soit (u,)en UNE suite numérique.
On dit que u,, admet / comme limite si

Ve>0, dngeN, VneN, (n>nj=|u,—/ <e)

O |l est possible d’adapter cette définition aux suites définies a partir d’'un cer-
tain rang.

O La valeur des premiers termes d’une suite ne modifie pas la valeur de la
limite.

Remarque

Démonstration - Recherche d’'une limite
Soit u,, = ¢, c € R.
Montrons que la suite (u,).en tend vers ¢, autrement dit, il faut que I'on montre que :

Ve>0, 3dngeN, VneN, (n>nj=|u,—c|<e)

Soit € > 0. Posons ng = 0
» Ainsing € N
» Montrons que Vn € N, sin > nyg, alors |u, —c¢| <€
Soit n € N, supposons que n > ng
Montrons que |u,, —c| <€
Ona |u, —c| =|c—c| =0 etpuisque ¢ > 0 alors |u,, —c| <€
La suite admet bien ¢ comme limite.
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Proposition - Lemme
Soit = € R alors la propriété suivante est vérifiée :

Démonstration
Avec le raisonnement par contraposée, il faut montrer que :

r#0= (Fe>0, |z|>¢€)

Supposons que z # 0. Montrons gqu’il existe ¢ > 0 tel que |x| > ¢

» Posons ¢ =

» Comme z #0,e >0
» De plus comme 1 > 1, alors, || > 2l = ¢
Par contraposée, la proposition est vraie.

Proposition - Unicité d’'une limite
Soit (u,)nen UNe suite numérique, alors si cette suite admet une limite finie, cette derniére est
unique.

Remarque ‘ ‘ Lorsque la suite (u,)nen tend vers ¢ on notera lim w,, = ¢

n——+00

Proposition - Limite et borne
Si la suite numérique admet une limite ¢, alors la suite est bornée.
Ainsi a I'inverse toute suite non bornée d’admet pas de limite finie.

DEFINITION (limite infinie)

Soit (u,).en Une suite réelle.
O (un)nen tend vers +oo Si

VA>0, dngeN, VneN, (n>n = u,>A4)
O (un)nen tend vers —oo si
VA>0, dnpeN, VneN, (n>n = u,<—-A)

Les limites infinies ne sont valides que pour des suites réelles.

Propriété - Limite infinie
» Si une suite tend vers +oc elle n’est pas majorée.
» Si une suite tend vers —oo elle n’est pas minorée.
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D) E FINITION (convergence, divergence)

Soit (uy)nen UNE suite numeérique.
O (un)nen converge si elle admet une limite finie.

 Sinon elle diverge.

O Toute suite convergente est bornée. (la réciproque est fausse)

O Une suite est divergente si elle n’a pas de limite finie (ex. (—1)") ou si elle

Remarque admet une limite infinie.

O Etudier la nature d’une suite c’est déterminer/montrer si la suite converge
ou si elle diverge.

4.4.2) Opérations sur les limites

Propriété - Opérations sur les limites
Soient (u,).en €t (v,)nen CONVergentes respectivement vers ¢, et /.
» Soit A un scalaire, alors (A\u,,) converge vers \(,,.
» (u, + v,) converge vers (, + {,
» (u,v,) converge vers {0,
» Soit £, # 0 alors (;-) converge vers ;-

Le tableau des limites usuelles sera donné ultérieurement...

Proposition - Th. de convergence
Soit (uy)nen €t (v,)nen deux suites réelles convergentes :
» Si, pour tout n € N, u,, > 0 alors 1ir+n U, >0
n——+0o0

» Si, pourtoutn € N, u,, <wv, alors lim u, < lim v,

n—-4o0o n—-4o00

Proposition - Th. des gendarmes
Soit (n)nens (Un)nen €t (wy,)nen trois suites réelles.
Supposons que, pour tout n € N

Si les suites (u,)nen €t (w,)nen CcONvergent vers la méme limite, alors la suite (v,,),en CcOnverge et
on a,

lim u, = lim v, = lim w,
n—-+o0o n—-+0o00 n—-+00
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Proposition - Th. de comparaison
Soient (u,)nen €t (vn)nen deux suites réelles.
Supposons que Vn € N, u,, < v,

» Si lim w, = +oo, alors lim v, = +o0

n—-+o00 n—-+0o
» Si lim v, = —o0, alors lim wu, = —o0
n—+oo n—+o0o
Théoreme

Soit (u,)en Une suite réelle.
» Si (u,)nen €St une suite croissante et majorée, alors la suite (u,,),cn converge et sa limite
est sup{u, | n € N}
» Si (un)nen €St une suite décroissante et minorée, alors la suite (u,).cn CcOnverge et sa
limite est inf{u, | n € N}

4.5) Comparaison asymptotique

DEFINITION (suite négligeable)

Soient (u,)nen €t (v,)nen deux suites réelles telles que (v,,),en €St non nulle.
La suite (u,) est dite négligeable par rapport a la suite (v,,) si :

lim (@> — 0.
n—+o0o Un
On note alors u,, = o(vy,)

DEFINITION (suite négligeable)

Soient (u,)nen €t (v,)nen deux suites réelles telles que (v,,),en €St non nulle.
La suite (u,) est dite équivalente par rapport a la suite (v,) si :

T <@> —1.
n—-+oo Un,

On note alors u,, ~ v,

Proposition - Suites équivalentes, négligeables
Soient (un)nen, (Vn)nen €1 (wy,)nen trois suites réelles telles que : Vn € N, u,, = v, + w,,.
Alors :

Uy, ~ Wy, & wy, = 0(uy,)
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Proposition - Propriété des suites négligeables
Soit (uy), (v,), (w,) trois suites réelles,
» Siu, =o(v,)
» Siu, =o(v,), alors VA € R*, \u,, = o(v,,)
» Siu, =o(w,) etv, = o(w,), alors u, + v, = o(w,)
» Siu, = o(v,), alors u,w, = o(v,w,)

DEFINITION (suite dominée)

Soient (u,)nen €t (v,)nen deux suites réelles positives.
u,, est dominée par la suite v, si:

et v, = o(w,) alors u,, = o(w,)

3C' > 0,n9 € N,Vn >nyonau, <Cuv,

On notera alors u,, = O(v,,)

Exemple, 5n — 3 = O(n?)
On cherche donc une constante C' > 0 tel que 5 — 3 < n? a partir d’'un certain rang ng

5n — 3 < Cn?
Par définition je sais que :
5n — 3 < 5n < n? pour ng > 5

On vient donc de trouver le rang a partir duquel 5n — 3 < n? donc Vn > 5.
On a alors montrer que 5n — 3 = O(n?). Notre constante ici est C' =1

Exemple, 2n? + 3n + 1 = O(n?)
Je cherche un rang n, et une constante C' tel que :

Vn > ng, 2n? +3n + 1 < Cn?
On vas alors décomposer notre expression :

m? < 2n2pour n>0
3n < n2pour n>3
1 <n’pourn >1

a partir de la le rang ng vas étre celui pour lequel on respecte les 3 conditions des innéquations
donc ici ng = 3.

Pour trouver notre constante C, reconstituons notre équation en additionnant chaque terme de
nos inéquations construites juste avant, on obtient :

"2 +3n+ 1< 2n%+n?+n?
< 4n?

Et1a, on a réussi a écrire 2n* + 3n+ 1 < Cn* avec C' =4
On vient donc de montrer que 2n* + 3n + 1 = O(n?) pour ny = 3 et C' = 4



CHAPITRE 5

LES FONCTIONS REELLES

5.1) Généralités sur les fonction réelles

5.1.1) Notion de fonction et d’application

DEFINITION (fonction réelle)

Une fonction réelle a valeurs réelles, ou plus simplement fonction réelle est un objet
mathématiques qui associe a tout nombre réel au plus un réel.

La notation suivante :
[ o f(z)

Se lit plus simplement ”f est la fonction qui associe a chaque réel x le réel

(@)

Remarque

DEFINITION (domaine de définition)

On appelle domaine de définition ou ensemble de définition de f, 'ensemble noté D; tel
que pour tout x € Dy, le réel f(z) existe.

Exemple
Prenons la fonction suivante :

. 1

Elle représente la fonction qui associe au réel z le réel 1. Or, vous savez tous qu’une division

par 0 est impossible.
Alors le domaine de définition peut étre donné de plusieurs manieres :

Dy ={x R |z #0}
=] — 00; 0[U]0; +o0[
= R*

51
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Prenons I'écriture générale suivante pour une fonction réelle :
f : Df — R
=y = f(z)

Ainsi ici on peut dire que :
« f est une fonction qui prend valeurs dans Dy et renvoie des valeurs réelles.
- z est appelé antécédant de y par la fonction f.
* y est appelé image de x par f.
+ Lensemble de toute les images par f est appelé ensemble image et il est aussi noté f(D;) =

{f(x) |z € Dy}

Exemple
Ona:

Deos = Dsin =R
Ce qui est vrai car vous n’étes pas sans savoir que :
VreR —1<cos(z) <1 —1 <sin(z) <1
Ainsi, avec les rappels effectués juste au dessus on note aussi que

c08(Deos) = sin(Dg) = [—1;1]

DEFINITION (application réelle)

Toute application réelle f tel que D C R, son domaine de définition, est définie par :

f:D—-R
z— f(x)

On note aussi f : = — f(z).

Dans une application tout élément de R peut posséder une, zéro ou plusieurs

Remarque antécédants. MAIS, tout élément de D doit forcément avoir une unique image.

5.1.2) Courbe représentative

D) E FINITION (courbe représentative)

Soit f une fonction réelle.
Dans un repére orthonormé, 'ensemble des points M de coordonnées (z,y) tels que = € Dy et

y = f(x) est appellé courbe représentative ou graphe de la fonction f et noté C; définie par :

Cr={(z,f(z)) |z € Dy}
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Exemple de courbe représentative
La courbe suivante représente la fonction f : z — 22, tracée dans

un repere orthonormé pour z € [—3, 3].

Pour preshot le cours, on sait que Vx € R posséde une seule
image pour la fonction f(x) = z?, on parle ainsi d’application.

On a aussi y = 4 possede deux antécédants x = =+2 ainsi
chaque image posséde au moins un antécédant on parle alors
d’application surjective.

|

3 2 -1 | o 37

Les fonctions jugées usuelles sont a retrouvées dans une fiche annexe sur

Remarque
qu Eureka.

5.1.3) Opeérations sur les ensembles

DEF' NITION (somme de fonctions)

Soit f et g deux fonctions de domaine de définition D; et G, respectivement, on note la
somme de deux fonctions :

frg:z=f(z)+g(x) Dprg=DsN Dy

D) E FINITION (Produit par un scalaire)

Soit f une fonctions de domaine de définition D, on note le produit par un scalaire d’une fonc-
tion \f avec \ € R défini par :

)\fl?:)\Xf(QT) D)\f:Df

DEF' N|T|ON (Produit de fonctions)

Soit f et g deux fonctions de domaine de définition D; et G, respectivement, on appelle
produit de deux fonctions noté fg¢ et défini par :

fg:x=f(x) xg(z) Dyg=DyN D,
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DEF'N'T'ON (Inverse d’une fonction)

Soit f une fonctions de domaine de définition D, on note le I'inverse d’une fonction % défini par :

1 1
- == D
f

= ~ {z € Dy | f(x) £ 0}

e

DEF| NITION (Quotient de fonctions)

Soit f et g deux fonctions de domaine de définition D, et G, respectivement, on appelle
Quotient de deux fonctions noté 5 et défini par :

i, _I@
g g9(z) P

{z € DyN Dy | g(x) # 0}

@ [~
|

DEF' NITION (Composition de fonctions)

Soient f et g deux fonctions réelles avec D, et D, leur domaine de définition respectifs. On définit
la composée de deux fonctions comme suit :

o+l f(2) L g(f(2)) = fog

Autrement dit, la composition de fonction notée f o g revient simplement a calculer pour un z;
donné =, = f(zy) puis ensuite de calculer g(z,).

O Il faut vérifier que z, € D, avant de calculer g(z,)
Remarque O De maniére général fog# go f et Dy, # Dyos.
O Lopération o n’est pas commutative.

Exemple
On considere deux fonctions f et g définies comme suit :

1
fix—a2?>—4dzetg:x— =
T

Alors on a :

a l'iverse on vas alors avoir :



5.1. GENERALITES SUR LES FONCTION REELLES 55

5.1.4) Monotonie d’une fonction

DEFINITION (péfinitions générale)

Soit f une fonction réelle de domaine de définition Dy,

 La fonction f est dite croissante sur un intervalle I si :
Vr,z, € Lavec x < x = f(z) < f(xo)

Autrement dit lorsqu’a partir d’'un certain rang =, > z on remarque que pour tous les autres
x € Tinférieurs a xg, on a f(z) < f(xo)-

 La fonction f est dite décroissante sur un intervalle I si :

Vo, x, € Iavec x < zg = f(z) > f(xo)

 La fonction f est dite monotone sur I si elle est soit croissante soit décroissante sur 1.

Lorsque les inégalités sont stricte on parlera alors de fonction strictement
croissante/décroissante.

Figure : Monotonie d’une fonction.
b

Remarque

Y

x \x T

5.1.5) Minoration et majoration d’une fonction

DEFINITION (définitions générales)

Soit f une fonction réelle définie sur un domaine de définition Dy.
4 On dit que f estmsi il existe M € Rtelque Vz € Drona f(z) < M.
1 On dit que f est ‘minorée siil existe M ¢ R tel queVz € Drona f(zx) > M
1 On dit que f est bornée si il existe o € R tel que Vz € Dy, f(z) < |al.
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5.2) Notion de limite de fonction

5.2.1) Genéralitées

DEFINITION (& augments)

On note R I'ensembles des réels augmenté de —oo a +oo.

R =R U {—o00; +o0}

DEFINITION (Limite d’une suite)

Soit f une fonction réelle définie sur une partie D C R, avec a € R ou une borne de D et ¢ € R.
On dit que f admet une limite 7 en a notée :

lim f(x) =4

r—a

si et seulement si V(u, ).y Une suite de réel définie sur D tel que lz’T (Uz)zen = a
T—r+00

lim f((uz)zeN) =1

T—+00

Autrement dit,

» peu importe comment on s’approche de a avec n'importe qu’elle suite (u,).cn, 12 suite des
images de f(u.).en S'approche de /.

On lit:
Lorsque x tend vers a alors f(x) tend vers (.
O Si f admet une limite alors elle est unique.
Remarque O Par contraposée : Si la limite de f n’est pas unique alors, cette derniere ne
possede pas de limite.
Exemple

La fonction sinus (rouge) et la fonction cosinus (bleue) n’ont pas de limite.
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Démonstration, unicité de la limite
Les suites (2n7)nen €t (207 + §)nen tendent vers 4-oo.
Or,vneN,ona:

» sin(2m) =0

» sin(2r + §) =1
Ainsi (2nm),en tend vers 0 et (2nm + ) e Vers 1.
D’ou la fonction sinus n’admet pas de limite.

DEFINITION (Limite gauche/droite)

O La fonction f admet ¢ comme limite a gauche de a, si pour toute suite (z,),en de réel de

DnN| — oo; af qui tend vers a, (f(x,))nen tend vers /.
Notons le :

lim f(z) =1/

r—a—

O La fonction f admet ¢ comme limite a droite de «, si pour toute suite (z,,).en de réel de
DnNa; +oo[ qui tend vers a, (f(x,))qen tend vers £.
Notons le :

lim f(z) =14

z—a™t

Proposition
» Si [ est définie en a alors :

lim f(z) =lim f(x)= f(a)="¢

z—a™t T—a~
Autrement, on dit que f est définie en a si et seulement si la limite a gauche et a droite sont
égales a f(a).
» Si f n’est pas définie en a, alors :
lz’mF flz)=lim f(z)="¢

r—a T—a—

Du coup, si la limite a gauche et a droite sont égales a ¢ mais que ¢ # f(a) alors la fonction
n’est pas définie en a.

La notation a™ et la notation a~
O Lorsque 'on cherche la limite d’'une fonction f en a™, en gros, on cherche ce
Remarque gu’il se passe pour f(z) lorsque x approche de a par valeurs suppérieures.

O Lorsque 'on cherche la limite d’'une fonction f en a—, en gros, on cherche
ce qu'il se passe pour f(z) lorsque = approche de a par valeurs inférieures.
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Exemple (1), fonction en morceaux
On considere la fonction suivante :

x?siz <2

f(m):{4sia:>2

On cherche a savoir si la fonction f est définie en 2.
Posons a = 2. Il vas alors falloir calculer la limite en 2~ et la limite en 27.

» Calculons la limite en 2~
Lorsque x approche vers 2 par valeurs inférieures alors z < 2 d'ou on a f(x) = 2?
Ainsi lim f(z)=22=4
r—2~

» Calculons la limite en 2+
Lorsque = approche vers 2 par valeurs suppérieures alors > 2 d’ou on a f(z) = 4.
Ainsi lim f(x) =4

z—2t

» Calculons f(2)
Pour z = 2, on prend f(x) = z?
dol f(2) =22=14
Ainsi puisque xli@ f(x) :xlﬁ;z_ f(z) = f(2) = 4, lafonction f(z) est définie en a = 2.

Exemple (2) fonction continue
On considéere la fonction

fR—=>R
r—3r+1

On cherche a savoir si f est définie en 2.
Posons a = 2. Calculons la limite a gauche, puis a droite.

» Calculons la limite en 2~
Lorsque = approche de 2 par valeurs inférieures, f(z) = 3z + 1
Ainsi lim f(x)=3x2+1=7
T—2~

» Calculons la limite en 2+
Lorsque = approche de 2 par valeurs suppérieures, f(x) =3z + 1
Ainsi li?;’b flx)=3x2+1=7
T—r2~

» Calculons f(2)
Onaf(2)=3x2+1=7
Puisque li?;”i flz) = lz‘@ f(x) = f(2) = 7 alors la fonction f est définie en a = 2.

Proposition, /imite en a

Pour montrer qu’une fonction f n’admet pas de limite en «, il suffit en fait de montrer que la limite
a gauche est différente de la limite a droite.

On note :

lim f(z) #lim f(x)

z—at T—a~
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Exemple
Prenons la fonction suivante :

2s8ixz >0

f(x):{lsia:<0

» La limite en 0~ est donnée par lz’ron flx)=1
z—0~

» La limite en 0" est donnée par li7(7]1+ f(x) =2
T—

D’ou lz‘m+ f(z) # lz‘ygz f(z) ce qui implique que la fonction f n'admet pas de limite en a.
x—0 r—0—

59

La limite de f(z) =1

La fonction f est bien définie tant que le dénominateur est
différent de 0 donc si = # 0. D'ot Dy = R\{0} = R*
La fonction f admet alors une limite en 0~ et en 0™

lim f(z) =+oco et lim f(x) =—oc0

20+ x—0~ 2 :; 4‘1
Ainsi, la fonction f n’admet pas de limite en 0 car la limite a
gauche est différente de la limite a droite.
5.2.2) Opeérations sur les limites
Remarque || Les tableaux suivants sont a savoir.
li lim f(x
Lim(f + g)(x) lim /@) lim(f % g)() lim /()
Uy +o0 | —00 0 | £y #0 | +oo
by | Ly+4, | +oo | —o0 0 0f 0f Fl
limg() | 4oo | 400 | 400 | FI limg(x) | g 20| of | 50, | +oof
—00 —00 Fl —00 +oo | FI | foof | Zoof
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: lim f(x)
tim (1)) i,
0 | ¢4#0 | +oo
limg(z) | 0 | £#0 | foo
0 FI | 4+oof | +oof — 1
' im (¢ +oof | = i
limg(@) | g, 20 [ o | L | ool lim(})(x) | 00! | 5 | 0
g
+oo of of F

O Fl "Forme Indéterminée”, plusieurs méthodes pour les contrer.
Voici les formes indéterminées :
Remarque 0 400 — o0 0 0x oo a2 w
0
O 1 Reéalisation d’'une étude de signe pour le déterminer.

813

Exemple

On cherche la lamite de la fonction = +— (2 + 1)y/z en 0.

Remarquons qu'on a f(z) = z% + 1 et g(z) = /z, un produit de fonctions. Ainsi calculons la
limite des deux fonctions indépendament puis essayons de déduire la limite finale.

» lim f(z)=0*+1=1
z—0
> lingg(x) =+v0=0
T—
Onaalors ¢y =1 et ¢, =0, ainsi d’apres le tableau des limites d’un produit de fonction, on a :

lim(z2 + 1)/ =1x 0 =0
x—0

Exemple

z?+1

x—3
Remarquons que nous avons un quotient de deux fonctions. Avec f(z) = 22 + 1 et g(x) = = — 3.
Ona:

On cherche la limite en 3" eten 3~ de = —

lim f(z) =lim f(z)=3>+1=10

=3~ z—3+
De plus :
» Pourx <3onax—3 <Odoncxli7;gg(x) =0"
> Pour:c>3onax—3>0doncmli7;z+g(x) =07

D’apres le tableau de la limite d’'un quotient de deux fonctions avec ¢; = 10 et {, = 0* on a :

| 10 o2 +1 10
lim =— = = —
=3~ T — 3 0- z—3+t T — 3 0t

Pour le quotient de deux fonctions, il existe une phrase permettant de les
mémoriser :

Remarque

IRI ORO ROI de RIO

oul==00, R=/letO=0%
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On cherche la limite en —co de z + 2% + 2°
Remarquons que nous avons une somme de deux fonctions ou f(x) = 22 et g(x) = 23.

Ainsi,
» lim f(r)=12%= 400
T—r—00
» lim f(z)=123=—00
T—r—00

On obtient alors :

lim 224+ 22 =400 —00=FI
Tr——00

Pour résoudre une forme indéterminée, on va factoriser par le terme de plus haut degré qui ici

est 3.
2 3 1
z? + 23 = 23 x—+x— =z =+1
3 23 z
Calculons la limite de 1 en —oc.
1
Ona lim —=0"

r——00 I

Ainsion a :

1
lim 2*+ 2% = lim o° (—+1> =—00(0+1) = —00
&

T—r—00 T—r—00

La limite de z2 + 22 en —oco est donc —oo.

5.2.3) Limite de fonctions composées

DEFINITION (Limite de composition de fonctions)

Soient D, £ deux parties de R avec f : D — R et g : E — R deux fonctions tels que f(D) C E.
Avec a € R un élément ou une borne de D, b € R un élément ou une borne de F et c € R.
Ainsi :

lim f(z) =b et lz'nz g(y) = c alors lz'_'r>n(g of)(x)=c

Tr—a

Exemple

- . 1\2
On considere la fonction z — (1 + —) )

Alorsona fogou:
» f(z) =1+ 21 avec lim f(z)=—o0
z—0~

» g(x) =x*avec lim g(x) = +oo
r——00
Ainsi, d’apres la proposition précédante :

1 2
lim (1 + —) = +o00
z—0~ x
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En cas d’indétemination, lorsque c’est possible on peut lever cette derniere
en transformant I'expression de la fonction de fagon a simplifier et pouvoir

Remarque conclure :
O Mise en facteur du terme dominant
O Encadrement

5.3) Calcul de limites

5.3.1) Fonction négligeable

DEFINITION (négligeable)

Soient f et g deux fonctions réelles définies sur D C R et a € R un élément ou une borne de D
tel que lim g(x) # 0.
Tr—a

La fonction f est dite négligeable devant ¢ au point a.
Si la limite du quotient des fonctions est nul pour limite en a.

o(g) <= lim i($) =0

a T—ra g

f

Exemple
Soient f(z) = z et g(x) = 22
Montrons que f est négligeable devant g en +oo.

75 1
lim =(x)=1lim — =1lim —=0
T—>~00 g T——+00 I T—+00 I

Ainsi, on note alors f = o(g)

o0

5.3.2) Fonction équivalente

DEFINITION (squivalence)

Soient f et g deux fonctions réelles définies sur D C R et a € R un élément ou une borne de D
tel que lim g(x) # 0.
Tr—a

La fonction f est dite équivalente devant g au point a.
Si la limite du quotient des fonctions est égal a 1 pour limite en a.

ff;g = limi(a:)zl

T—ra g
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Exemple
Soient f(z) =z et g(z) =z + 1.
Montrons que f est équivalente devant g en +oc.
1 . 1

zl—Z>Too E(x) :ml—Z>Too r+1 z—=toox+ % :xﬁToo 1+ % :xﬁToo 14+0 =1

Ainsi, on note alors f ~ ¢
—+o00

Proposition
Soit f et g deux fonctions équivalentes en un point « alors :

f ~g = lim f(x) = € =lim g(x)

T—a T—ra

Autrement dit, deux fonctions dites équivalentes partagent la méme limite au point d’équivalence.

5.3.3) Rétrospective sur les polynémes

DEFINITION (Polynsme)

Soit n € N (entier naturel)
Une fonction polynome de degré n est une fonction de la forme :

n
T ap X"+, 1 X"+ X?+ e X +ag= Y ap XF
k=0

ou a,, ..., a1, ag sSont les coefficients de degré n du polynébme, avec a,, # 0.

Proposition
Soit n € N et P une fonction polynéme définie par :

Ve eR P(z) = Y ap X*
k=1
oU (ag)o<k<n €St une famille de réels avec a,, # 0.
Alors P(x) o~ a, X" et ainsi

lim P(z) = lim a,X" =
T—r—+00 T—+00

+oosia, >0
—00 Sia, <0
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Exemple, [page 62]

On considére la fonction z — 2% + 23, le calcul de cette fonction en —oo aboutit & une forme
indéterminée.

OrvVvz e R,

1
et lim 1+——1 aisnionaz?+ a3 ~ x3

T—r—00

Onen dedwt donc que :

lim 22+ 23= lim 23 = —00
———

équivalent

5.3.4) Fraction rationnelle

D) E FINITION (fraction rationnelle)

On appelle fraction rationnelle toute fonction de la forme :

r oy DX

Q(X)

ou P et Q sont des fonctions polynomes.

Proposition
Soient n,m € N, et P, @ deux fonctions polynémes définies par :

VXER  P(X)=YaXt  Q(X)= 3 beX*
k=0 k=0

oU (ag)o<k<n €t (br)o<k<m SONt deux familles de réels avec a,, # 0 et b, # 0.

Alorson a:

P(X)  nypm

Q(X) +oo by,
Ainsi :

x) +o0Sin>m
P(X ay, an .
) — 2 =1 — Xnm — — SIin=m
M Q(X) 2 me b,

0sin<m

ou, le signe de la limite est donné par le signe de .




5.3. CALCUL DE LIMITES 65

Exemple

4
en +oo.
a2
On a une forme indéterminée <
Or d’apres la proposition précédante :

Etudions la limite de = —

1—4z P(X)
€T =
2+2  Q(X)
Ou:
> P(X) :1—4XJ:J —4X
> Q(X):X2+2+~ X2
Ainsion a :
1—-4 —4 —4
lim x—lzm —x:lim—:O
z—400 T2 4+ 2  z—ofoo 12 z—+oo I

5.3.5) Comparaison de fonctions usuelles

Soient «, 5 deux réels positifs.
Alors,
» Iim lﬁ =0

r—+oo %

» lim 2°In’z =0
x—r—+00
Bx
» lim -

z—+oo ¢
On note aussi :

15 - « a Bx
n x+ooo(x )etx +Ooo(e )

Cela signifie en fait que :
» Les fonctions puissances dominent les puissances des fonctions logarithmique.
» Les puissances des fonctions exponentielles dominent les fonctions puissances.

A savoir aussi :

Remarque O Limites remarquable en 0
O Limite de fonctions usuelles

5.3.6) Le théoreme des gendarmes

DEFINITION (Théoréme)

Soient f, g, h trois fonctions définies sur D C R avec a € R un élément ou une borne de D et
¢ eR.

Supposons que Vz € D,on a f(z) < g(x) < h(z)

Alors :

lim f(z) =limh(x) =0 = limg(x)="{

Tr—a T—a r—a
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Exemple
- 1
On cherche la limite de = — —cos(x) en +oo.
T
1 1 1
Pour tout z € R*ona —— < —cos(z) < —
Zz T T

D’ou :
. 1
» Iim —— =20

T——+00 a5

» lim 1=0

r——+o0 I

\ L -1
D’apres le théoreme des gendarmes on a lim —cos(xz) =0

x——+o00 I

5.4) Continuité d’'une fonction

DEFINITION (continuité)

Soient f une fonction définie sur un intervalle I C Reta € I.
On dit que f est continue en « si et seulement si :

lim f(x) = f(a)

Tr—a

Graphiquement :
Une fonction est continue sur un intervalle 7

» Sile graphe de la fonction ne présente aucun saut
» Si il est possible de tracer la courbe sans lever le stylo

'fonction continue en «| |fonction discontinue en «

Ainsi, on dit que f est continue sur / si et seulement si elle est continue en tout point a € 1.

DEF| NITION (continue a gauche a droite)

Soient f une fonction définie sur unintervalle I C Reta € I.

O f est continue a gauche deasi lim

z—a~=f(a)

0 f est continue a droite deasi lim
z—at=f(a)
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5.5) Fonction de classe

DEF|N|T|ON (fonction de classe C°)

Soit D un intervalle de R.
Une fonction f définie sur D est dite de classe C° si et seulement si f est continue sur D.

Proposition
Soient f et g deux fonctions de classe C°.

» f 4+ g estde classe C°

» fg estde classe C°
/

» < estde classe C°
g

» \f estde classe C° (A € R)
» fogestde classe C°

5.6) Prolongement par continuité

Soient :

» [ un intervalle ouvert de R
» acl
» f une fonction définie et continue sur 7\{a}
Si lim_ flz) = lin”i f(z)=rCavecl e R.
Alors il existe une unique fonction réelle définie et continue sur I, et égale a f sur I\{a}.

Elle est appelée prolongement par continuité de f en a et correspond a la fonction f définie sur I
par :

f(x) sizx#a

12 Ssiz=a

Ve el, f(x):{

Exemple du cours
Soit f: x — MY

xI
f est une fonction définie sur R*
Or lirré f(z) =1 donc f est prolongeable par continuité en 0.
T—

Son prolongement est la fonction g définie sur R par

sin x

siz#0
1siz=0

Vo e R, g(z) = {
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Proposition, Theoreme des valeurs intermédiaires
Soit f une fonction continue sur un intervalle [a; b] avec (a,b) € R* eta < b.
Si f(a)f(b) < 0 alors 3z €]a; b tel que f(c) =0

Remarque || Sila fonciton est strictement monotone sur [« : b] alors ¢ est unique.

5.7) Dérivabilité

DEFINITION (dérivabiiité)

Soit f une fonction définie sur un intervalle ouverti de R et a € 7.
La fonction f est dérivable si :
f(z) — f(a)

z — ————~ 2 gdmet une limite finie en «
r—a

Cette limite est appellée dérivée de f et est notée f/(a).

Si f est dérivable en a, alors la fonc-
tion f’(a) représente la pente de la
droite de la tangeante a la courbe Cy
au point (a, f(a)) dont I'équation est
y =f(a) +f'(a)(x — a).

Remarque La fonction :

f(x) = f(a)

r—a

X =

est aussi appelée taux d’accroisse-
ment de la fonction f au point a.

Exemple

SoitceRet f:z—c

On note Dy = R, le domaine de définition
Soita € R

C_C:O

Vx € Rn{a}, f<xa)c —fl9) _

—a Tr—a

On a donc lim flz) — f(a)

=0
. T—a T — Qa . .
La fonction f est alors dérivable en « et sa dérivée en a est donnée par f'(a) =0

Proposition
Soit f une fonction.
Si f est dérivable en a € R alors elle est aussi continue en a.
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DEFINITION (vocabulaire)

Soit f une fonction réelle définie sur un intervalle ouvert : de R.

0 f est dite dérivable sur i si f est dérivable en tout points a € i.
0 Si f est dérivable sur i, alors la fonction = — f/(x) est définie sur i et est appelée
fonction dérivée de f et notée f'.

a f est dite continGment dérivable sur i si :

B / est dérivale sur i
B /' est continue sur i

DEFINITION (Dérivabilité a gauche, a droite)

Soient f une fontion définie sur un intervalle i C R et a € R une borne de .

0 f est dérivable a gauche de « si la fonc- 0 f est dérivable a droite de « si la fonction
o o DD =IO s L e T W admet une limite finie a
r—a —
nie a gauche de a : droite de a :
o f@) = f@) i 1@ = 1@ _,
T—a~ Tr—a z—at Tr—a
Proposition

Soient f une fontion définie sur un intervalle i C R et a € 1.
f est dit dérivable en a si et seulement si :

» f est continue en a
» f admet une dérivée a gauche et a droite de a égales.

Toute fonction continiment dérivable sur une partie D C R est dite de classe C! sur D.
On note alors f € C*(D)
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Fonction Dérivée Condition
Fonction (f) | Dérivée (f') | Ensemble dériva.
u™ nu/u™ 1 n € N*
k,keR 0 R
exp(u) u exp(u) -
x 1 R
u’ 0
>
Vu 2\/u B
ar + b a R
u/
In |ul — u#0
U
", n e N*¥ na™ 1 R
u u’ u#0
1
— 0
- Y u 7é 0
1 1 U u
- . R*
T x
sinu u’ cos u -
1 —n .
z" ! R
cos(u) —u!sin(u) -
sin(x) cos(z) R
u® au/u® ! u>0, o €R*
cos(x) — sin(x) R
tan(u) | o (14cos®(v)) | u#5+km kel
Fonction (f) | Dérivée (f)
utw u +
uv v+ uv
u u'v — uv'
v v?
u(v) u (v
1 u’
—1 _ _
¢ u u?
u? 2uu’
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D) E FINITION (dérivée seconde)

Soit f une fonction dérivable sur un intervalle i ouvert de R.
f est dite deux fois dérivable sur i si la dérivée [’ de f est dérivable sur i.

Dans ce cas la dérivée de f’ est appelée dérivée seconde de la fonction f.
Elle est notée f”, f? ou encore (f')’

DEFINITION (dérivée n — ieme)

Soit n € N.
Une fonction f est dite n-fois dérivable sur : si il est possible de dériver n fois la fonction f sur i
selon le princive de récurrence suivant :

{ﬂk) = (f*1) Vkel;n

fO =
Dans ce cas, la fonction £ est appelé dérivé d’ordre n de f sur i.

Remarque || f estindéfiniment dérivable sur i, si Vn € N, f est n-fois dérivable sur .

DEF'N'T'ON (Fonction de classe C™, C*°)

Soit f une fonction définie sur une partie D de R et n € N.

Si f est n-fois dérivable sur D de dérivée n-iéme ™ continue sur D, alors la fonction f est dite
de classe C™ sur D.

Onnote : f € C*(D)

Soit f une fonction définie sur une partie D de R et n € N.

Si f est indéfiniment dérivable sur D de dérivée n-ieme f™ continue sur D, alors la fonction f
est dite de classe C> sur D.

Onnote: f € C*(D)

5.8) Etude de variation d’une fonction

Proposition Etudier la variation d’une fonction
Soit f une fonction définie sur un intervalle ouvert i de R,

—

. Déterminer le domaine de définition Dy
. Etudier la dérivabilité de f sur D; et calculer sa dérivée
. Etudier le signe de la dérivée

» Si f’ > 0sur i, alors f est croissante sur i

» Si f’ < 0suri,alors f est décroissante sur i

» Si f/ =0 suri, alors f est constante sur ¢
. Donner le tableau de variation de f

. Calculer les limites de f aux bornes du domaine D, pour compléter le tableau

w N

(G20




72 CHAPITRE 5. LES FONCTIONS REELLES

Exemple
Pour tout z € R*,,

1

12

f'(x) =

Puisque f’(z) < 0 alors la fonction f est décroissante sur R’

Proposition, signe de la dérivé

Soit f une fonction dérivable sur un intervalle ouvert I de R.
» Si f/(x) > 0sur I, alors f est croissante sur 1.
» Si f/(x) < 0surl,alors f est décroissante sur I.
» Si f'(x) = 0sur I, alors f est constante sur 1.

5.9) Image d’un intervalle

DEFINITION (image d'un intervalle)

Soient (a,b) € R* avec a < b et f une fonction définie et continue sur [a; b].
0 Si f est croissante sur [a; b], alors 'image de [a; b] par f vérifier :

f(la; b)) = [f(a); £(b)]

0 Si f est décroissante sur [a; ], alors I'image de [a; b] par f vérifier :

f(la; b)) = [f(0); f(a)]

Ce résultat s’adapte aux intervalles ouverts et aux intervalles avec des bornes
infinies, en passant aux limites.

D) E FINITION (maximum, minimum)

Soit f une fonction définie sur un intervalle ouvert i de R, et z, € i.

O Le point 2y est appelé minimum de f sur O Le point x est appelé maximum de f sur
18l iSi:

Remarque

Vz €4, f(zo) < f(z) Vz €1, f(z0) = f()

Proposition
Soit f une fonction définie sur un intervalle ouvert i de R, et z, € i.

O Si f est une fonction dérivable en x, et que x, est un maximum/minimum de f sur i, alors
f(xo) = 0.
O On suppose que [ est 2 fois dérivable sur i
B Si f'(xg) =0et f/ >0, alors x, est un minimum de f sur i.
B Si f(zg) =0et f” <0, alors zy est un maximum de f sur i.
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f e A I e e e e R e B R A B v :Un—>\/iE
xl_i}r_noof(x) —00 —00 —00 0~ 0 0 ND ND
xli}lgff(m) 0~ 0" 0~ 0~ +00 —00 ND ND
xli%if (z) 0+ 0t 0t +00 +00 +00 ot +00
xl—i>I-iI-100f(x) +o0 +o0 +00 0F 0f 0t +00 0t

Limite des fonctions usuelles

5.10) Exponentielle et logarithme

DEFINITION (La fonction in(x))

21, La fonction logarithme népérien est I'unique fonction
qui s’annule en 1 et dont la dérivée est z — 1 sur R,.
| | | La fonction [n est définie, dérivable et croissante de R*.
1 9 3 4 dans R.
limln(xz) = —oco  lim In(z) = +o0
—21 z—0 T—+00
Sa dérivée , (In(z)) =1
—4 1L
41 DEFINITION (La fonction )
Y3 1 La fonction exponentielle notée exp, est I'unique fonc-
5| tion qui vérifie :
V(z,y) € R xR%, y = exp(z) & = = In(x)
1
exp est définie, dérivable et croissante de R en R*.
4 3 2 -1 1 lim exp(z) =0 lim exp(z) = +o0
11 r—>—00 xr—>+00

Sa dérivée est elle-méme, (exp)’ = exp

Quelques regles et base a savoir sur les fonction in et e.
» Le nombre exp(1) noté e s’appelle nombre exponentielle et ¢ € RnQ.
» Vz € R, In(exp(z)) = x ainsi que Yz € R, "™ = ¢
» In(1)=0;ln(e)=1;e"=1
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Proposition
x > In(z)

V(z,y) € (R})?
» In(zy) = In(x) + In(y)
> ln(é) = —In(x)
> Zn(g) = In(x) — In(y)

» VneN,onalin(z") =n x In(|z|)

T e”
V(z,y) € R?
> cap(z+y) = ei”ﬂp(:v) x exp(y)
» ecrp(—z) = ()
» cxp(r —y) = (Zf;gg

» VYn €N, onaexp(nr) = (exp(x))"

DEFINITION (en base a)

0 Soit a € R*\{1}

fonction définie sur R* par :

Le logarithme en base a« (log,) est la

O Soit a € RY,

L’ exponentielle en base « (exp,) est la
fonction définie sur R par :

In(x)

Vo € RY, loga(r) = In(a) Vo € R, expy(x) = exp(x X In(a))

O VreRetyeRL
noton y* = exp(z x In(y)) le nombre y a la puissance x.

Proposition, /es puissances
Soienta,b € R etz,y € R.
> ®=1"=0 > gtV = &
a¥y 1

» oY = a%a¥ » (ab)* = a®b”®




CHAPITRE 6

RELATION BINAIRE

6.1) Introduction aux relations binaires

En mathématiques, une grande partie de I'étude des objets repose sur la compréhension des liens
gu’ils entretiennent entre eux. Par exemple, en arithmétique, on peut comparer avec la relation <, et en
géomeétrie, on peut étudier des figures ayant des propriétés similaire grace a la relation d’égalité des
formes.

Une relation binaire est un concept fondamental permettant de décrire ces liens entre des éléments
d’'un ensemble ou de plusieurs ensembles. Elle formalise des connexions entre les objets mathématiques
et sert de base a de nombreuses structures utilisées en algebre, en logique et en informatique.

Par exemple, lorsqu’on dit "3 est plus petit que 5”, on établi une relation entre ces deux nombres.
De méme, dire que "Pierre est ami avec Marie” exprime une relaiton sociale entre deux personnes.
Ces relations bien qu’appliquées a des contextes différents, peuvent étre étudiées avec des outils
mathématiques communs.

Dans la suite, nous allons définir rigoureusement le concept de relation binaire, quels sont ses types et
propriétés, ainsi que des exemples concrét de leur application.

6.2) Complément sur les ensembles

Rappel de cours

Partie d’un ensemble
Soit £ un ensemble.
Alors 'ensemble des parties de F est noté P(F) :

P(E)={A|AC E)}

Exemple
Soit £ ={0,1,2} alorson a:

P(E) = {0,{0},{0,1},{0, 2}, {1}, {1, 2}, {2},{0, 1, 2}}

On peut méme aller jusqu’a dire que P(FE) contient tout ensemble étant inclu

Remarque ) .
q ou égal a F, on note C.

75
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DEF' NITION (Ensemble des applications)

Soient £ et F' deux ensembles.

On appelle ensemble des applications de E dans F noté F(E,F) (ou F¥) I'ensemble de
toutes les fonctions qui associent a chague élément de E un unique élément de F.

Autrement dit, c’est 'ensemble des fonctions qui associe a tout élément de E un unique élément

de F.

Rappel de cours

Application
On spécifie a chaque fois associe un unique élément de F', puisque on parle de 'ensemble des
applications. Et pour rappel une application associe a chaque antécédant une seule image.

Rappel de cours

Le produit cartésien
Soitn > 2et Fy, Es, ..., E, n-ensembles. On note le produit cartésien défini par :

E1><E2X...XEn: HEk:{(l’l,ZL‘Q,...,l'n)|Q§'1€E1,Q§'2€E2,...,l’n€En}
k=1

On aura 'occasion de le revoir un peu plus tard.

Un peu de notation
» Lensemble £ x £ x ... x E peut aussi étre noté E"
n—ﬁis
» Lorsque I'on note "Prenons x € E"”, cela revient simplement a dire que I'on prend un n — uplet
noté (zy,...,x,) ou chaque élément x; avec i € [1;n] appartient a £.

Rappel de cours

La notation n — uplet
On appelle n —uplet un objet mathématiques noté (xq, xs, ..., x,) (OU (z;)1<i<n). Pour rappel ils sont
ordonnés ce qui signifique que (1,2) # (2,1) contrairement aux ensembles qui eux ne sont pas

ordonnés.

Proposition, Relation d’égalité

Soit F1, ..., E, n-ensembles.

et X =(z1,...,2,), Y = (y1,...,yn) deux n — uplets de Ey X ... x E,.

Alors on dit que X =Y si ils possédent exactement le méme nombre déléments que I'on notera
n et si chaque élément a la position 7 sont égaux.

Deux n — uplets sont égaux si et seulement si :
» |l possédent le méme nombre d’éléments
» Leurs éléments sont dans le méme ordre




6.3. LES RELATIONS BINAIRES 77

DEF' N|T|ON (Partition d’un ensemble)

Soit £ un ensemble et I C N.
Une famille (F;);c; de parties d’éléments de E est appelée partition de £ siles trois propositions

suivantes sont vérifiées.
QvVviel,onaF;#0
Tous les ensembles appartenant a la famille (F;);c; ne doivent pas étre vide.

el
Lunion de toutes les parties doit donner E.
Q V(i,j) € I*tel que i # j avec F;N F; = ()
Toute intersection de deux parties différentes doit donner 'ensemble vide.

Exemple d’application
Soient £ = {1,2,8,6,9,4,7} et G = {G1, G5} une famille avec G, = {1,8,6} et G5 = {2,9,7}.
On cherche a savoir si G est une partition de E.

» Vérifions si toutes parties dans G est non vide.
OnaG;={1,8,6} #0etGy={2,9,7} # 0.
Ainsi la premiére condition est vérifiée.

» Calculons l'union de toutes les ensembles de G.
GLUG,=1{1,2,6,7,8,9}
Or G1 UG, # F alors, la seconde propriété n’est pas vérifiée
D’ou G n’est pas une partition de E.

O Si (F});er est une partition de E. D’apres la définition, Vz € E, il existe un
unique i € [ tel que z; € F;.
Autrement dit, chaque élément de E doit étre contenu dans une unique par-
tie F;.

O Parfois, on utilise le terme de partition méme si la premiére condition n’est
pas vérifiée. On parle de partition non-propre.

Remarque

6.3) Les relations binaires

6.3.1) Principe de base

DEFINITION (Relation binaire)

Soient E et I deux ensembles non vide.

O Toute partie R de F x F est appelée relation binaire sur E et F.

0 Soit R une relation sur E et F, (xz,y) € E X F.
On dit que z et y sont en relation selon R si et seulement si (z,y) € R.
On notera alors zRy.

 Lorsque E = F, on parle de relation binaire sur £'.
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En pratique, une relation binaire R sur E et F' se définit généralement a 'aide
d’un prédicat portant sur £ x F précisant les éléments en relation :

Remarque V(z,y) € EXF TRy <= P(z,y)

Dans ce cas I'ensemble R = {(z,y) | P(z,y)}

Rappel de cours

La notation (z,y) € E x F
Lorsque 'on prend (x,y) € E x F en gros ¢a veut simplement dire que je prend un couple d’élément
ouxre FEetyeF.

Exemple
La relation “inférieur ou égal” définie sur R par :

V(z,y) € R TRy <<=z -1y >0

est une relation binaire sur R, elle est aussi notée <.

6.3.2) Représentation a I'aide d’un graphe

DEFINITION (Graphe)

Une graphe orienté G est un couple (S, A) de deux ensembles ou :

S est un ensemble fini et non vide, celui des sommets.
O A c S x S estunensemble dont les éléments sont appelés arcs.

Un graphe G = (S, A) est souvent représenté graphiqguement sur le plan R? en suivant les régles
suivantes :

» Chaque sommet S est représenté a I'aide d’un point sur le plan.

» Chaque arc (i, j) de A est représenté a I'aide d’une liaison orientée du point i vers le point ;.

Représentation d’une relation avec un graphe
Soit R une relation binaire sur un ensemble E contenant n éléments. Il est possible de représenter
cette relation a I'aide d’'un graphe orienté G = (S, A) ou :
» Lensemble des sommets du graphe G correspond a 'ensemble E.i.e. S = F
» Lensemble des arcs du graphe G correspond a I'ensemble des relations entre les éléments de
E.ie.

A={(i,j) € E* | iRj}
Exemple
/ 2 \
R ={(z,y) | z divisey, z,y€{1,2,3,4}} 1\ 4
3
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6.3.3) Representation matricielle

Soit R une relation binaire sur les ensemble [1;n] et [1;m], avec n,m) € (N*).
Il est possible de représenter cette relation a I'aide d’'une matrice M € M,,,,({0,1}) définie par :
1 siiRj

V(i,j) € [1in] x [Lym]  my; = {0 sinon

Exemple

1100
R ={(1,1),(1,2),(2,3),(2,2),(3,4)} M=10110
000 1

6.3.4) Propriétés des relations binaires

Proposition
Soit £ un ensemble non vide et R une relation binaire sur E.
La relation R est dite :

» REFLEXIVE si tout élément de E est en relation avec lui-méme.
On note :

Vee B xRx

» SYMETRIQUE si |a relation entre chaque paire d’éléments et permutable.
On note :

Vr,y e E 1Ry <= yRx

» ANTISYMETRIQUE si lorsque chaque paire d’éléments sont en relations de maniére per-
mutable alors ils sont égaux.
On note :

Ve,ye E (2RyANyRz) =z =1y

» TRANSITIVE si un premier élément est en relation avec un deuxiéme, et que ce deuxieme
est en relation avec un troisieme, alors le premier est aussi en relation avec le troisieme.
On note :

Ve,y,2 € E (xRy ANyRz) = 2Rz

DEFINITION (relation d’équivalence)

Soit E une ensemble non vide et R une relation.
R est une relation d’équivalence si et seulement si cette méme relation est :

0 Réfléxive O Symétrique a Transitive
Léquivalence se note ~.
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Remarque || SiV(z,y) € E? onax ~ y alors x est dit équivalent a y.

Sur tout ensemble FE, la relation d’égalité est une relation d’équivalence sur E.

Proposition
Soient F et F deux ensembles, et f : E — F une application.
La relation binaire R définie sur F par la propriété suivante est une relation d’équivalence sur E :

O T4

Soitz € E
On a f(xz), et par définition f(z) est égal a lui méme ainsi f(z) = f(z) = 2R«
R est réfléxive.
O Symétrie
Soitzx,y € F
Alors on a 2Ry < f(z) = f(y)
Puisque I'égalité est commutative cela signifie que a = b est équibalent a b = a.
Alorsona:

flz) = fly) = fly) = f(2)

Ainsi la relation R est symétrique

O Transitivité
Soit z,y, z € E alors par définition de la symétrie on a Ry et yRz c’est a dire :

Puisque f(y) = f(z) dans la seconde affirmation alors on peut remplacer f(y) par f(z)
dans la premiére affirmation.
Ainsi on obtient :

f(z) = f(y) quidonne f(z) = f(z)

Ainsi R est une relation transitive.
En somme d’aprés les trois propriétés, R est une relation d’équivalence.

D E FINITION (classe d’équivalence)

Soit £ un ensemble non vide et R une relation d’équivalence sur E.
On appelle classe d’équivalence, 'ensemble des éléments de F partageant la méme relation.

C(z) ={y € E | 2Ry}

Les classes d’équivalences peuvent étre notées C(z), = ou encore 7.

Autrement dit, la classe d’équivalence C(x) représente I'ensemble des

Remarque iz , .
éléments y € E qui sont en relation avec .
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D) E FIN |T|O [\ (ensemble quotient)

L ensemble quotient représente 'ensemble de toutes les classes d’équivalences suivant R.
On note :

E\R ={C(z) |z € E}

Représentant d’'une classes d’équivalence
Remarque Soit C € E\R, C est alors une classes d’équivalence.
Chaque élément qui se trouve dans C' est appelé représentant de C.

Exemple
Considérons la relation suivante :
\V/Dl, D2 eD DlRDQ < D1 || D2

ou D représente 'ensemble des droites, et || pour paralléle.
Soit D € D alors la classe d’équivalence de D :

C(D)={D'e€D|D| D}

Représente I'ensemble des droites qui sont paralléles a D.

Proposition
Soit £ un ensemble non vide et R une relation d’équivalence sur E.
Alors :
V(z,y) € E? 2Ry <= C(z) =Cly)
Deux éléments sont en relation si et seulement si leurs classes d’équivalence
Remarque .
sont égales.
Proposition
Soient E un ensemble non vide et R une relation d’équivalence sur E.
Alors :
» Vz e E,onaC(x)#
» JC(x)=F
zel

» V(z,y) € E*siC(x) # C(y) alors C(z) N C(y) =0
Cette proposition ne vous fait pas penser a quelque chose ?
Evidemment que si, la définition d’une partition!

On montrera cette proposition en séance commune, juste pour vous prouver que tout est
démontrable.

La troisieme condition signifie que si deux classes d’équivalences sont
Remarque différentes alors elles sont disjointe. A l'inverse si elles partagent au moins
un élément commun, alors elles sont égales.
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Proposition
Soit £ un ensemble non vide.

» Soit R une relation d’équivalence sur E.
Alors 'ensemble E\R des classes d’équivalences suivant R est une partition de E.

» Soit I C N et (P,);c; une partition de E. Alors la relation R sur E définie par :
Ve,ye E, 2Ry<= diel,xz < P, et
yer

est une relation d’équivalence sur E.

6.4) Relation d’ordre

D) E FIN |T|ON (relation d’ordre)

Soit £ une ensemble non vide et R une relation.
R est une relation d’ordre si et seulement si cette méme relation est :

0 Réfléxive O Antisymétrique a Transitive

Une relation d’ordre est le plus souvent noté < ou <.

DEFINITION (ordre total)

Soit (£, R) un ensemble ordonné.

1 Deux éléments z et y sont dit comparables si xRy ou yRz.

0 Si tous les élements de I'ensemble ordonné sont comparables, la relation est dite
d’ordre total sur E.
On dira alors que (E, R) est un ensemble totalement ordonné.

D) E FINITION (Prédécesseur et successeur)

Considérons (E, <) un ensemble ordonné.
x,y deux éléments de F tels que :

dzx<y Q3eE

Oaz#y (z#z2#y) A (z<z<y)
Alors z est appelé prédécesseur de y. Et y est appelé successeur de .

6.4.1) Diagramme de Hasse

Tout ensemble ordonné et fini (E, <) peut étre représenter dans le plan a partir d'un diagramme de
Hasse selon la regle suivante :

» Chaque point du diagramme correspond a un élément de E dont la position suit la convention
suivante :
Si x est plus petit que I'élément y au sens de la relation < alors x sera placé en dessous de y.
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» Deux points correspondants a deux éléments x et y sont reliés par un segment dans le diagramme
si x est un prédécesseur de y.

Si un ensemble est totalement ordonné alors son diagramme de Hasse sera

Remarque .
une chaine.

6.4.2) Ordre inverse

DEFINITION (ordre inverse)

Soit R une relation d’ordre sur un ensemble £ non vide.
Alors, la relation R~! définie sur E par

V(z,y) € E?, xR 'y & yRzx

est une relation d’ordre sur E appelée ordre inverse de R sur E.
Si R est d’ordre total sur £ alors R~! I'est aussi.

6.4.3) Ordre produit

DEFINITION (ordre produit)

Soit (E,R) et (F,S) deux ensembles ordonnés.
La relation P définie sur E x F par :

Y(a,b),(c,d) € Ex F, (a,b)P(c,d) <= (aRc A bSd)

est une relation d’odre sur E x F', appelée ordre produit sur £ x F.

Proposition
Soit (E,R) et (F,S) deux ensembles ordonnés.
La relation £ définie sur E x F par :

V(a,b),(c,d) € ExX F, (a,b)L(c,d) <= (a # cANbRc)V (a =cAbSd)

est une relation d’ordre sur £ x F.
Appelée ordre lexicographique sur £ x F.

Remarque || SiR etS sontdordre totaux sur E et I alors £ est un ordre total sur £ x F.

6.4.4) Majoration et minoration

D E FINITION (majorant, minorant)

Soit (£, R) un ensemble ordonné et A C FE (une partie de E).
Soitm € E.

( m est un majorant de Adans EsiVr € A, xRm

 m est un minorant de Adans EsiVx € A, mRzx
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Remarque
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O La partie A de E est dite majorée si elle admet au moins un majorant dans
E.

O La partie A de F est dite minorée si elle admet au moins un minorant dans
E.

O A est bornée si elle est a la fois minorée et majorée.
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