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4.2.4 Ordre d’une suite récurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Propriétés sur les suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1 Suites monotones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Majoration et minoration d’une suite . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Nature d’une suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.1 Limite d’une suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 Opérations sur les limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Comparaison asymptotique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Les fonctions réelles 51
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CHAPITRE 1

THÉORIE DES ENSEMBLES

1.1 ) Généralités sur les ensembles

1.1.1 ) Définitions générale

DÉFINITION (ensemble)

On appelle ensemble une collection d’éléments distincts. Chaque élément d’un ensemble est
unique et ne peux donc apparaı̂tre plusieurs fois.

Exemples
• L’ensemble des nombres pairs : {0, 2, 4, 6, . . .}
• L’ensemble binaire : {0, 1}
• Les ensembles déjà vu jusqu’à aujourd’hui : N,Z,D,Q,R,C

Remarque
Les éléments d’un ensemble sont compris entre accolades { et }, chacun
séparés par une virgule ,.
Un ensemble est souvent représenté par une lettre majuscule.

1.1.2 ) Diagramme de Venn
On utilise un diagramme de Venn pour représenter les relations entre plusieurs ensembles comme
l’union, l’intersection et les différences.

❏ Un ensemble est représentée par un cerlce.
❏ Chaque cercle qui représente un ensemble, prend en compte chaque élément distincts de l’en-

semble.
❏ Les zones où deux cercles se chevauchent est appelée intersection.
❏ La partie extérieure du diagramme (le reste) peut représenter l’univers.

A B
A B

C
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Remarque Dans un diagramme de Venn, toutes les intersections doivent apparaı̂tre
même si elles sont vide.

1.1.3 ) Diagramme d’Euler

A B
A B

C

Contrairement au diagramme de Venn, la représentation des intersections vide est libre. C’est à dire
que l’on peut les représenter comme à gauche avec le chevauchement de A et B ou alors ne pas
représenter une intersection vide comme à droite avec A et C.

1.1.4 ) Description par image directe
On considère l’ensemble E suivant :

Alors E = {peigne, éponge, lunettes, brosse, téléphone, clé}

Remarque
Par convention,

• Les ensembles sont désignés par une lettre majuscule
• Les éléments d’un ensemble sont représentés par une lettre minuscule

Exemples
Il existe plusieurs ”types” d’ensembles :

• Ensemble fini : E = {0, 1, 2, 3}
• Ensemble infini : R

DÉFINITION (fini, infini)

❏ Un ensemble fini est un ensemble qui possède un nombre d’éléments dénombrable.

❏ Un ensemble infini est un ensemble qui possède une nombre d’éléments non-dénombrable.
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1.1.5 ) Descriptions d’ensembles particulièrs

DÉFINITION (ensembles particuliers)

❏ Un ensemble vide est un ensemble qui ne possède aucun éléments.
On note E = ∅ = {}

❏ Un singleton est un ensemble qui ne possède qu’un seul et unique élément.
On note E = {un seul}

❏ Une paire est un ensemble qui possède deux éléments.
On noyte E = {toi, nous}

❏ L’ensemble des booléens (vrai/faux) est fini et noté E = {0, 1}.
❏ Un ensemble peut être défini à l’aide d’une propriété. Alors pour qu’un élément x appartiennent

à E il faut qu’il valide la condition.

E = {x ∈ E | P(x)}

où P est la propriété.

Exemple
On considère un ensemble E et une propriété P(x) =”x = 2k tel que k ∈ Z” que x doit respecter
pour appartenir à E.
On a ainsi :

E = {x ∈ Z | x = 2k, k ∈ Z}

Et, cet ensemble est celui des nombres pairs car tout nombre pair s’écrit sous la forme 2k avec
k ∈ Z, un entier relatif.

Rappel de cours

Un entier relatif peut être négatif ou positif.

1.2 ) Application en informatique

En informatique, l’introduction des ensembles n’a pas toujours bien été définie :
• Liste
• Pile

• Tableau associatif
• Set

• sac (= multiset)

1.2.1 ) Les ensembles en langage C
En C, il n’y a pas de type set natif sans utiliser de bibliothèque externe. Alors, pour pouvoir utiliser des
structures de la même manière que des ensembles :

• On utilise un tableau (trié ou non)
• On vérifie nous-même l’unicité des éléments du tableau
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1.2.2 ) Les ensembles en Java

Référence : Extrait du cours de Java fonctionnel de Killian Reine (L2 INFO).

DÉFINITION (HashSet)

HashSet est une implémentation de l’interface Set<E>. Ce dernier est utilisé pour stocker des
éléments unique.
En gros, il ne permet pas de stocker des doublons.
Pour gérer ses données, HashSet utilise une table de hachage en interne (HashMap).

Caractéristiques principales

• Les éléments d’un HashSet sont uniques.
Si vous souhaitez ajouter un élément déjà présent, ce dernier ne sera pas ajouté

• Les données ne sont pas ordonnées.
• Si on ajoute/supprime un élément, l’ordre peut changer.

Rappel de cours

Puisque HashSet implémente Set<E> et hérite de Collection<E> ainsi, elle propose les méthodes
suivantes :

• add(E elem), remove(Object o), clear( )

• isEmpty( ), contains(Object o)

• et d’autres...

Exemple, Partie spéciale sur Minecraft
• Dans Minecraft, un joueur a un inventaire, mais on veut s’assurer que certains types d’objets

ne peuvent pas être dupliqués. Par exemple, dans une partie spéciale, un joueur ne peut
avoir qu’un seul exemplaire de chaque outil rare (comme une ” épée de diamant ” , une ”
pioche enchantée ”, etc.).

1 import java.util.HashSet;

2

3 public class MinecraftInventory {

4 public static void main(String [] args) {

5 HashSet <String > inventory = new HashSet <>();

6

7 inventory.add("Épée de diamant");

8 inventory.add("Pioche enchant ée");

9 inventory.add("Arc puissant");

10

11 System.out.println("Inventaire : " + inventory );

12

13 boolean ajoutEpee = inventory.add("Épée de diamant");

14 if (! ajoutEpee) {

15 System.out.println("Tu as déjà une Épée de diamant

16 dans l’inventaire !");

17 }

18

19 if (inventory.contains("Pioche enchant ée")) {

20 System.out.println("Tu as une Pioche enchant ée !");

21 } else {

22 System.out.println("Tu n’as pas encore de Pioche enchant ée.");

23 }

24

25 inventory.remove("Arc puissant");
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26 System.out.println("Apr ès suppression , inventaire : " + inventory );

27

28 System.out.println("Nombre d’outils dans l’inventaire : " +

29 inventory.size ());

30 }

31 }

Remarque
On tente d’ajouter (ligne 13) l’item ” Épée de diamant ” dans inventory, mais
cette dernière est déjà dans l’inventaire alors, la valeur de ajoutEpee sera
fausse.

Inventaire : ["Épée de diamant", "Arc puissant", "Pioche enchantée"]

Tu as déjà une Épée de diamant dans l’inventaire !

Tu as une Pioche enchantée !

Après suppression, inventaire : ["Épée de diamant", "Pioche enchantée"]

Nombre d’outils dans l’inventaire : 2

Remarque Cette parenthèse ne sert pour le moment que de culture générale, les apsects
poussés de la programmation en Java seront abordés en L2 INFORMATIQUE.

1.2.3 ) Les ensembles en python
Python quant à lui possède les structures set qui permettent de définir des ensembles par extensions.

Exemple

1 L = [0, 1, 2, 3, 4]

2 E = set(L)

3 #Affichera {1, 2, 3, 4} dans un ordre al é atoire

1.3 ) Retour sur les ensembles de nombres

Vous connaissez je pense déjà les ensembles suivants depuis le lycée, auquels on a ajouté l’ensemble
des complexes en début d’année en Algèbre de base.

L’ensemble des complexes lui possède tous les nombres de R donc tout ceux de Q, de D, de Z et de
N. En gros l’ensemble des nombres complexes englobe tout les autres nombres connus.
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Remarque

Vous connaissez déjà ces ensembles :

• N l’ensemble des entiers naturels
• Z l’ensemble des entiers relatifs
• D l’ensemble des décimaux
• Q l’ensemble des rationnels
• R l’ensemble des réels

Puis, en Algèbre de baseau premier semestre, nous avons ajouté l’ensemble
C des complexes.

1.3.1 ) Rétrospective sur l’ensemble des nombres pairs
Comme déjà évoqué plus tôt, l’ensemble des nombres pairs englobe les nombres qui peuvent s’écrire
sous la forme 2k avec k ∈ Z.

Exemple
On souhaite définir cet ensemble mais pour des nombres pairs non nuls et positifs.

• P = x ∈ N | x est pair.
• P = {2, 4, 6, 8, . . .}
• P = {x ∈ N∗ | x

2
∈ N∗}

• P = {x ∈ N∗ | ∃k ∈ N∗ | x = 2k}

Vous pouvez traduire ces ensembles en français et vous verrez qu’au final ils désignent tous la
même chose.

1.4 ) Opérations sur les ensembles

1.4.1 ) Inclusion entre les ensembles

DÉFINITION (Inclusion)

Soient A et B deux ensembles. On dit que B est inclus dans A si
et seulement si tous les éléments qui sont dans B sont aussi dans
A. On note :

B ⊂ A ⇐⇒ ∀x ∈ B, x ∈ A

A

B

Remarque

➩ Si B ⊂ A, on dit alors que B est une partie de A.
➩ Cas particulier :

A ⊂ B et B ⊂ A ⇐⇒ A = B

La double inclusion (dans les deux sens) implique l’égalité des deux en-
sembles.
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Propriétés de l’inclusion
Soient E,F et G trois ensembles.

• ∅ ⊂ E
L’ensemble vide est inclu dans tous les ensembles.

• Réfléxivité, E ⊂ E
Un ensemble est une partie de lui-même.

• Antisymétrie A ⊂ F ⊂ E =⇒ E = F
La double inclusion (dans les deux sens) provoque l’égalité de deux ensembles.

• Transitivité, Si E ⊂ F et F ⊂ G alors E ⊂ G.

Zoom sur la transitivité
Pour mieux comprendre la transitivite, vous pouvez essayer de manière illustrée.
Puisque E ⊂ F alors on peut tracer un cercle représentant l’ensemble F et dedans, on trace E
puisqu’il est inclu dans F , on a bien dit que ça implique que tous les éléments de E sont dans F .
Vous obtenez le dessin suivant :

F

E

On peut alors faire la même chose avec G et F puisque on a aussi F ⊂ G. Donc on dessiner un
ensemble G dans lequel se trouve F .
Vous obtenez ainsi :

G

F

Enfin,
en combinant on obtient le schéma suivant :

G

F

E

On remarque bien que E est alors dans G ce qui implique que E ⊂ G. La propriété de transitivité
vient d’être montrée de manière visuelle.
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Remarque

à bien faire attention
Soit E = {1, 2, 3, 4, 5}
• {1, 2} ⊂ E car tous les éléments du sous-ensemble appartiennent à E.
• {1} ⊂ E (pour les mêmes raisons)
• {1, 2} /∈ E, un ensemble ne peut appartenir à un autre, et puis l’élément est

coposé de deux éléments de E

• 1 ∈ E, l’élément 1 est présent dans l’ensemble E ainsi 1 ”appartient” à E.

Récap des notations :
• = pour l’égalité
• ⊂ pour l’inclusion
• ∈ pour l’appartenance

• /∈ pour la non-appartenance
• =⇒ pour l’implication
• ∅ l’ensemble vide

1.4.2 ) Opérations de création d’ensemble

DÉFINITION (union ∪)

Soient E un ensemble et A,B deux parties de E.
L’opération d’ union de deux ensembles permet de créer un nouvel
ensemble noté A ∪B qui contiendra à la fois les éléments de A et
aussi les éléments de B.
Plus rigoureusement :

A ∪B = {x ∈ A ou x ∈ B} A ∪B

DÉFINITION (intersection ∩)

Soient E un ensemble et A,B deux parties de E.
L’opération d’ intersection de deux ensembles permet de créer un
nouvel ensemble noté A ∩B qui contiendra les éléments communs
entre A et B.
C’est à dire que l’ensemble résultant contiendra les éléments qui
sont dans A et en même temps dans B.
Plus rigoureusement :

A ∩B = {x ∈ A et x ∈ B}
A ∩B

DÉFINITION (différence \)

Soient E un ensemble et A,B deux parties de E.
L’opération de différence de deux ensembles permet de créer un
nouvel ensemble noté A\B qui contiendra les éléments de A en
enlevant les éléments de B.
C’est à dire que l’ensemble résultant contiendra les éléments de A
qui ne sont pas dans B.
Plus rigoureusement :

A\B = {x ∈ A | x /∈ B}
A\B
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Remarque

• La notation A\B se lit ”A privé de B”.
• Puisque l’ensemble résultant créé avec A\B contient en tous les éléments de
B en commun avec A. On note :

A\B = A ∩B

• Si x ∈ B alors ça revient à dire ”x n’appartient pas à B”.

DÉFINITION (complémentaire ∁)

Soient E un ensemble et A une partie de E.
L’opération de complémentaire d’un ensemble et de sa partie per-

met de créer un nouvel ensemble noté ∁E(A) ou encore Ac qui
contiendra les éléments de E qui ne sont pas dans A.
C’est à dire que l’ensemble résultant contiendra les éléments de E
qui n’apparaissent pas dans A. Ducoup on peut aussi noté E\A.
Plus rigoureusement :

∁E(A) = {x ∈ E | x /∈ A}
∁E(A)

Petit récap des opérations données jusqu’à lors :
Soient E un ensemble et A,B des parties de E.
A est le cercle de gauche, B celui de droite et E est représenté par un rectangle

A ∩B A ∪B ∁E(A)

A\B = A ∩B B\A = B ∩ ∁E(A) (A\B) ∪ (B\A)

Priorité des opérations
❏ ∁ est prioritaire sur ∩ et ∪
❏ ∩ et ∪ sont prioritaires sur ⊂ et =
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1.4.3 ) Propriétés algébrique des opérations d’ensembles

Propositions
Soient E un ensemble et A,B,C trois parties de E.

❏ Associativité
(A ∪B) ∪ C = A ∪ (B ∪ C) (A ∩B) ∩ C = A ∩ (B ∩ C)

en gros l’associativité c’est le fait que l’on puisse ”déplacer” les parenthèses sans changer
l’issu du résultat.

❏ Commutativité
A ∪B = B ∪ A A ∩B = B ∩ A

en gros la commutativité c’est le fait que l’on puisse changer l’ordre des composantes du calcul
sans pour autant changer le résultat final.

❏ Élément neutre
A ∩ E = A A ∪ ∅ = A

en gros un élément est dit neutre lorsqu’il ne change pas l’issu d’un résultat.

Exemple
Dans l’addition, 0 est un élément neutre. Dans la multiplication 1 est un élément neutre.

❏ Élément absorbant
A ∩ ∅ = ∅ A ∪ E = E

en gros un élément est dit absorbant lorsque muni d’une opération, elle donne lui-même.

Exemple
Dans la multiplication 0 est un élément absorbant.

❏ Distributivité
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

Remarque ∪ et ∩ sont distributifs l’un envers l’autre.

❏ Propriétés du complémentaire
➩ ∁E(E) = ∅
➩ ∁E(∅) = E

➩ ∁E(∁E(A)) = A
➩ ∁E(A) ∪ A = E

➩ ∁E(A) ∩ A = ∅

➩ ∁E(A ∪B) = ∁E(A) ∩ ∁E(B) ➩ ∁E(A ∩B) = ∁E(A) ∪ ∁E(B)

1.4.4 ) Loi de Morgan
Soient E un ensemble et A,B deux parties de E.

➩ A ∪B = A∪B = A ∩B ➩ A ∩B = A∩B = A ∪B
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1.4.5 ) Autres propriétés

textbfPropositions
Soient E un ensemble et A,B,C trois parties de E.

❏ Autres propriétés du complémentaire
➩ A\B = A ∩ ∁E(B) = A\(A ∩B) ➩ A = (A ∩B) ∪ (A ∩ ∁E(B))

❏ L’inclusion
➩ (A ∩B) ⊂ A ⊂ (A ∪B)
➩ (A ∩B) ⊂ B ⊂ (A ∪B)

➩ A ⊂ B ⇐⇒ A ∩B = A ⇐⇒ A ∪B = B

DÉFINITION (disjonction d’ensembles)

Soient E un ensemble et A,B deux parties de E.
On dit que A et B sont disjoints si et seulement si :

A ∩B = ∅

En gros, deux ensembles sont disjoints si ils n’ont aucuns éléments en commun.

Proposition
Soit A un ensemble et A1, . . . , An n parties de A. Alors :

n⋃
i=1

Ai = A1 ∪ A2 ∪ . . . ∪ An

n⋂
i=1

Ai = A1 ∩ A2 ∩ . . . ∩ An

1.5 ) Application informatique des ensembles
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1.6 ) Introduction aux applications

DÉFINITION (application)

Soit E et F deux ensembles, On note :

f : E → F

x 7→ f(x)

❏ f est une application qui a pour tout x dans E associe un unique élément de F .

❏ L’élément est appelé image de x par f(x).

❏ On pose y = f(x) où x est l’ antécédent de y par f .

Remarque

Les applications ont des similitudes avec les fonctions en informatique :

• Une fonction possède un nom (= ici f )
• Une fonction possède des paramètres (= ensemble E)
• Une fonction possède une valeur de sortie (= ensemble F )
• Un code de fonction (= application)

Soient E et F deux ensembles, et soit f : E → F une application.
L’ensemble défini par :

{(x, y) ∈ E × F | y = f(x)}

est appelé le graphe de l’application f .

1.7 ) Notion, Le produit cartésien

DÉFINITION (Produit cartésien)

Soit E1, E2, . . . , En, n-ensembles.
On appelle Produit cartésien généralement noté E1×E2×. . .×En et définit plus rigoureusement
par :

n∏
k=1

Ek = {(x1 ∈ E1, x2 ∈ E2, . . . , xn ∈ En)︸ ︷︷ ︸
n−uplet

}

Autrement dit, le produit cartésien de n-ensembles donne un ensemble de n-uplets où l’élement
à la position k appartient à l’ensemble Ek.

Exemple pour illuster
Soit A = {1, 2, 3} et B = {5, 6, 7} alors on a :

A×B = {(1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (2, 7), (3, 5), (3, 6), (3, 7)}

Remarque A la grande différence des ensembles, un n-uplet est une structure
mathématiques ordonnée. Ainsi l’ordre des éléments a une importance.
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CHAPITRE 2

ÉLÉMENTS DE LOGIQUE

2.1 ) Bases et propriétés

Remarque Le raisonnement logique fais partie des caractéristiques principales des
mathématiques.

DÉFINITION (logique)

La logique se veut conforme au bon sens, cohérent ou encore rationnel.
On peut dire d’une chose qui n’est pas logique qu’elle est incohérente, absurde.

Pour démontrer par un raisonnement logique, il va falloir énoncer des propriétés, des propositions et
des théorèmes mathématiques.
C’est justement l’objectif de ce chapitre.

DÉFINITION (propriété)

Une propriété est une phrase (déclaration) dont on peut savoir sans ambiguı̈té sa valeur de
vérité :

❏ VRAI ❏ FAUX
On parle aussi d’assertion en informatique.

Rappel de cours

Une assertion en programmation est un test qui permet au développeur de savoir si les valeurs
retournées par une fonction sont valides ou non.

Exemple
”Pour tout k ∈ N, 2k est un nombre pair et 2k + 1 est un nombre impair.”

Remarque

• en pratique, on énonce uniquement des propriétés qui sont vraies.
• Pour prouver la validité d’une propriété on utilise des démonstrations ce qui

plus difficile.
• Pour montrer qu’une propriété est périmée, il suffit de trouver un contre-

exemple.

17
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2.2 ) Les connecteurs logiques

DÉFINITION (connecteurs logiques)

Les connecteurs logiques sont des opérateurs utilisées sur les propriétés. Ils permettent
d’écrire de nouvelles propriétés à partir de celles qui existent déjà.

❏ négation ¬
❏ disjonction (ou) ∨

❏ conjonction (et) ∧
❏ implication =⇒

❏ équivalence ⇐⇒

2.2.1 ) Le non-logique ¬

DÉFINITION (négation)

Soit P une propriété.
La négation de la propriété P dite ”non-P”, est notée ¬P.

❏ Vraie si P est fausse. ❏ Fausse si P est vraie.

P ¬P

0 1

1 0

Exemple
Prenons la propriété P : ”x ≥ 4”. La propriété ¬P : ”x < 4”. Elle est vraie si x < 4
et fausse si x ≥ 4.

2.2.2 ) Le ou-logique ∨

DÉFINITION (disjonction)

Soit P et Q deux propriétés.
La disjonction de la propriété P et Q dite ”P ou Q”, est notée P ∨Q.

❏ Vraie si au moins une est vraie. ❏ Fausse si les deux sont fausses.

P ∨Q
Q

0 1

P
0 0 1

1 1 1

Exemple
Prenons les propriété P : ”x ≥ 4” et Q : ”x < 10”. Vraie tant que x ≥ 4 ou
tant que x < 10.

2.2.3 ) Le et-logique ∧

DÉFINITION (conjonction)

Soit P et Q deux propriétés.
La conjonction de la propriété P et Q dite ”P et Q”, est notée P ∧Q.

❏ Vraie si les deux propriétés sont vraies. ❏ Fausse si au moins une est fausse.
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P ∧Q
Q

0 1

P
0 0 0

1 0 1

Exemple
Prenons les propriété P : ”x ≥ 4” et Q : ”x < 10”. Vraie tant que x ≥ 4 et
tant que x < 10.
Ducoup si x = 2 la propriété P ∧Q est fausse.

2.2.4 ) L’implication =⇒

DÉFINITION (conjonction)

Soit P et Q deux propriétés.
L’ implication de la propriété P et Q dite ”P implique Q”, est notée P =⇒ Q.

❏ Vraie si ¬P ∨Q.
❏ Fausse si P ∧Q.

P =⇒ Q
Q

0 1

P
0 1 1

1 0 1

Exemple
Soit P : ”Il pleut” et Q : ”le sol est mouillé” on exprime P =⇒ Q : ”Si il
pleut, alors le sol est mouillé”..
Le fait qu’il pleuve (que P soit vrai) a pour conséquence de vérifier Q.

Remarque Si P est vraie alors Q l’est nécessairement.

2.2.5 ) L’équivalence ⇐⇒

DÉFINITION (conjonction)

Soit P et Q deux propriétés.
L’ équivalence de la propriété P et Q dite ”P équivaut à Q”, est notée P ⇐⇒ Q.

❏ Vraie si :
➩ Les deux propriétés sont fausse.
➩ Les deux propriétés sont vraies.

❏ Fausse si :
➩ La valeur de vérité des propriétés est inverse l’une de l’autre.

P ⇐⇒ Q
Q

0 1

P
0 1 0

1 0 1

Exemple
Soit P : ”Il pleut” et Q : ”le sol est mouillé” on exprime P ⇐⇒ Q : ”Il pleut,
si et seulement si le sol est mouillé”.

Remarque Si P est vraie (resp. fausse) Q l’est aussi nécessairement.
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2.3 ) Application informatique

Tables de vérité en informatique

2.4 ) Propriétés et priorités logiques

Priorité des connecteurs logiques
• ¬ est prioritaire sur ∨ et ∧
• ∨ et ∧ sont prioritaires sur =⇒ et ⇐⇒

2.4.1 ) Propriété de ∧ et ∨

Propriétés
Soit P, Q et R trois propriétés.

❏ Associativité de ∧ et ∨
(P ∧Q) ∧R ⇐⇒ P ∧ (Q∧R) (P ∨Q) ∨R ⇐⇒ P ∨ (Q∨R)

❏ Commutativité de ∧ et ∨
P ∧Q ⇐⇒ Q∧ P P ∨Q ⇐⇒ Q∨ P

❏ Éléments neutre
P ∧ vrai ⇐⇒ P P ∨ faux ⇐⇒ P

❏ Éléments absorbant
P ∧ faux ⇐⇒ faux P ⇐⇒ vrai

❏ Distributivité de ∧ et ∨
P ∧ (Q∨R) ⇐⇒ (P ∧Q) ∨ (P ∧R) P ∨ (Q∧R) ⇐⇒ (P ∨Q) ∧ (P ∨R)

2.4.2 ) Propriétés de la négation ¬

Propriétés
Soit P une propriété.

❏ ¬(vrai) ⇐⇒ faux

❏ ¬(faux) ⇐⇒ vrai

❏ ¬(¬P) ⇐⇒ P
❏ P ∨ ¬P ⇐⇒ vrai

❏ P ∧ ¬P ⇐⇒ faux
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2.4.3 ) Loi de Morgan
Soient P et Q deux propriétés, les propriétés suivantes sont vraies.

¬(P ∨Q) ⇐⇒ (¬P) ∧ (¬Q) ¬(P ∧Q) ⇐⇒ (¬P) ∨ (¬Q)

Exemple du cours
Soit n ∈ N
D’après la loi de Morgan, l’inverse de la propriété ”n n’est pas pair” ou ”n n’est pas impaire” est
la propriété suivante :

”n n’est pas pair” et ”n n’est pas impaire”

2.4.4 ) Propriétés de =⇒ et ⇐⇒

Propriétés
Soient P et Q deux propriétés.
(P =⇒ Q) ⇐⇒ (¬P ∨Q) Ainsi ¬(P =⇒ Q) ⇐⇒ ¬(¬P ∨Q) = P ∧ ¬Q

On peut alors réinterpréter l’équivalence comme suit :

(P ⇐⇒ Q) ⇐⇒ (P =⇒ Q) ∧ (Q =⇒ P)

⇐⇒ (¬P ∨Q) ∧ (¬Q ∨ P)

et à l’inverse,

¬((P ⇐⇒ Q)) ⇐⇒ ¬((P =⇒ Q) ∧ (Q =⇒ P))

⇐⇒ ¬((¬P ∨Q) ∧ (¬Q ∨ P))

⇐⇒ (P ∧ ¬Q) ∨ (Q∧ ¬P)

2.5 ) Prédicats et quantificateurs

DÉFINITION (prédicat)

Un prédicat est une phrase déclarative qui contient une ou plusieurs variables et dont la vérité
dépend des valeurs prises par ces variables dans un ensemble E (appelé domaine).
Pour que le prédicat ait un sens, il faut toujours préciser le domaine E.

Exemples

1. Soit P(x) défini par : ”x est un nombre pair”, avec x ∈ Z.
Le prédicat P(x) est vrai pour x = 2, 4, 6, . . ., et faux pour x = 1, 3, 5, . . ..

2. Soit Q(x, y) défini par : ”x+ y > 0”, avec x, y ∈ R.
Le prédicat Q(x, y) est vrai pour des couples (x, y) tels que x+ y > 0.

3. Soit R(n) défini par : ”n est divisible par 3”, avec n ∈ N.
Le prédicat R(n) est vrai pour n = 3, 6, 9, . . ., et faux pour n = 1, 2, 4, . . ..
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DÉFINITION (quantificateurs)

Les quantificateurs sont des symboles qui permettent de préciser la portée des variables des
prédicats mis en jeu dans une propriété afin d’écrire des propriétés plus complexes.
Il en existe 2 :

• Le quantificateur universel ∀
• Le quantificateur existenciel ∃

Proposition quantificateur universel
Soit E un ensemble et P une propriété sur les éléments de E.
La propriété selon laquelle ”pour chaque/tout élément x dans E, P(x) est vraie” est notée :

∀x ∈ E, P(x)

Proposition quantificateur existenciel
Soit E un ensemble et P une propriété sur les éléments de E.
La propriété selon laquelle ”pour au moins un élément x dans E, P(x) est vraie” est notée :

∃x ∈ E, P(x)

Remarque

Soit E = {a1, a2, . . . , an} un ensembles à n éléments :

• ∀x ∈ E,P(x)
P(a1) ∧ P(a2) ∧ . . . ∧ P(an)

• ∃x ∈ E,P(x)
P(a1) ∨ P(a2) ∨ . . . ∨ P(an)

Proposition
Soit E un ensemble et P un prédicat portant sur les éléments de E.

• ¬(∀x ∈ E,P(x)) ⇐⇒ ∃x ∈ E,¬P(x)

• ¬(∃x ∈ E,P(x)) ⇐⇒ ∀x ∈ E,¬P(x)

Le plus simple à retenir c’est simplement que ¬∃ = ∀ et ¬∀ = ∃.

Remarque Faites attention à l’ordre des quantificateurs !
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CHAPITRE 3

ÉLÉMENTS D’ANALYSE RÉELLE

3.1 ) Définitions générales

DÉFINITION (analyse)

L’ analyse représente la branche d’étude du continu en mathématiques.

Exemple d’analyses

• Analyse des nombres réels et complexes
• Suites numériques, fonctions numériques
• ...

Remarque L’analyse est utilisée dans différents domaines en informatique comme les sta-
tistiques et les probabilités (IA par ex.).

Schéma des ensembles connus

Remarque
On voit très bien sur le schéma que l’ensemble des réels R englobe tous les
autres ensembles, ainsi N ⊂ R par exemple.
En gros tous les éléments de N sont aussi dans R.

23
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3.2 ) Les parties de R

Rappel de cours
Partie d’un ensemble
Soit A et B deux ensembles, on dit que ”B est une partie de A” si et seulement si tous les éléments
de B appartiennent à A.
Pour faire la liaison avec vos connaissances du chapitre 1, on note B ⊂ A.

DÉFINITION (différence)

Soit E un ensemble et A une partie de E.
L’ensemble E\A représente l’ensemble des éléments de E privé des éléments de A.

E\A = {x ∈ E | x /∈ A}

et se lit ”x dans E tel que x n’appartient pas à A”.

DÉFINITION (0 exclu)

Soit E un ensemble.
L’ensemble E∗ représente l’ensemble des éléments de E privé de 0.

E∗ = E\{0} = {x ∈ E | x ̸= 0}

et se lit ”x dans E tel que x est différent de 0”.

DÉFINITION (les positifs)

Soit E.
L’ensemble E+ représente l’ensemble des éléments de E positifs .

E+ = {x ∈ E | x ≥ 0}

et se lit ”x dans E tel que x est plus grand ou égal à 0”.

DÉFINITION (les négatifs)

Soit E un ensemble.
L’ensemble E− représente l’ensemble des éléments de E négatifs .

E+ = {x ∈ E | x ≤ 0}

et se lit ”x dans E tel que x est plus petit ou égal à 0”.

Remarque

Ainsi si je souhaite représenter l’ensemble des positifs stricts je peux le
représenter comme suit :
Soit E un ensemble

E∗
+ = E+\{0} = {x ∈ E | x > 0}
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3.3 ) L’ensemble des rationnels Q

DÉFINITION (Q les rationnels)

L’ensemble des rationnels est défini par :

Q =

{
p

q
| p ∈ Z, q ∈ N∗, pgcd(p, q) = 1

}
où

❏ pgcd(p, q) est le plus grand diviseurs commun de p et de q.
❏ La condition pgcd(p, q) = 1 signifie que les entiers p et q sont premiers entre eux (l’unique

diviseurs commun de p et q est 1).

Rappel de cours
Plus grand commun diviseur
Soit n ∈ E.
C’est le plus grand k ∈ N tel que k divise k-fois n.

Exemple
On cherche le pgcd(30, 12) décomposons 30 et 12 en produit de nombres premiers.

• 12 = 2× 6 = 2× 2× 3

• 30 = 2× 15 = 2× 3× 5

Ainsi, pgcd(30, 12) = 2× 3 = 6.

Remarque Un nombre rationnel est un nombre qui peut s’écrire sous la forme a
b

avec a, b
deux entiers et b ̸= 0.

3.3.1 ) Les nombres irrationnels R\Q

DÉFINITION (nombre irrationnel)

Un nombre irrationnel , à l’inverse d’un rationnel est un nombre qui ne peut pas être écrit sous
forme de quotient a

b
.

Remarque Les nombres irrationnels incluents les nombres à virgule infinie.

Propriété
L’ensemble des réels noté R inclu tous les nombres entiers et décimaux y compris les irrationnels.
Ainsi, les irrationnels représentent en fait l’ensemble des réels privé des nombres rationnels.
C’est pour cette raison que l’on note généralement l’ensemble des irrationnels :

R\Q
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3.4 ) Raisonnements mathématiques

3.4.1 ) Généralités sur les raisonnements

DÉFINITION (raisonnement mathématiques)

On appelle raisonnement mathématiques un processus logique qui consiste en une suite
d’idées ou d’arguments de manière cohérente (= logique) permettant d’arriver à une conclusions
à partir d’hypothèses faites au préalable ou de faits énoncés.

Exemple
Vous devez déterminer si vous allez prendre votre parapluie pour sortir.

1. Hypothèse 1 : Si il pleut, il est nécessaire de prendre son parapluie
2. Hypothèse 2 : La météo indique qu’il pleut aujourd’hui

Par un raisonnement de bon sens, puisque la météo a indiqué qu’il allait pleuvoir alors vous
prenez votre parapluie.

3.4.2 ) Raisonnement par l’absurde

DÉFINITION (l’absurde)

Soit P une propriété.
Pour montrer la propriété à l’aide d’un raisonnement par l’absurde ,

❏ On suppose que ¬P est vraie
❏ On montre que cette situation est impossible

Exemple
Soit P la propriété P : ”n2 est pair alors n est pair”.
Par l’absurde :
Supposons que si n2 est pair alors n est impair.
Puisque n est impaire alors ∃k ∈ Z tel que n = 2k + 1
Ainsi, n2 = (2k + 1)2 = 2(k2 + 2k) + 1
Puisque k ∈ Z alors k2 + 2k ∈ Z
On peut alors poser K = k2 + 2k ∈ Z
Ainsi n2 = 2K + 1 où k ∈ Z ce qui indique que n2 est impair.
Ce qui est absurde car on a supposé n2 pair.
Ainsi la propriété P est vérifiée par l’absurde.

n2 pair implique n pair
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Exemple
Soit P la propriété ”

√
2 est un nombre irrationnel”

Par l’absurde,
Supposons que

√
2 est un nombre rationnel.

C’est à dire que
√
2 ∈ Q.

Puisque
√
2 est un nombre rationnel alors par définition de l’ensemble Q :

√
2 ∈ Q =⇒ ∃a ∈ Z,∃b ∈ Z∗ |

√
2 = a

b
, pgcd(a, b) = 1

En français puisque
√
2 est un rationnel alors il existe deux entiers a et b (premiers entre eux)

avec b ̸= 0 tel que
√
2 = a

b
.

Isolons p :
√
2 =

a

b√
2b = a

2b2 = a2

D’après l’exemple précédant, b2 ∈ Z donc 2b2 est pair.
Ainsi a2 est pair, ce qui implique que a est pair.
D’où

∃k ∈ Z | a = 2k

Ainsi, on peut déterminer b

2b2 = a2

2b2 = (2k)2

Alors b2 est pair, implique b pair.
Ainsi on a a, b deux nombres pair, il ont donc un plus grand commnun diviseur qui est 2 ce qui
contredit l’hypothèse pgcd(a, b) = 1.
D’où par l’absurde, la propriété

√
2 ∈ R\Q est vraie.

3.4.3 ) Raisonnement par contraposée

DÉFINITION (l’absurde)

Soit P une propriété.
Pour montrer la propriété à l’aide d’un raisonnement par contraposée ,

❏ On détermine ¬P
❏ On montre qu’elle est vraie
❏ On en déduit alors que P est vraie
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Exemple
On reprend la proposition de l’exemple précédant.
Soit P := n2 pair, alors n pair”.
Par le principe de contraposée,
On doit montrer que :

Si n est impair alors n2 est impair, n ∈ Z

Puisque n est impair alors ∃k ∈ Z tel que n = 2k + 1
Ainsi :

n2 = (2k + 1)2

= 2k2 + 4k + 1

= 2(k2 + 2k) + 1

Puisque k ∈ Z alors k2 + 2k ∈ Z par conséquent on peut poser K = k2 + 2k ∈ Z
Ainsi on a

n2 = 2(k2 + 2k) + 1

= 2K + 1

= impair

La contraposée est alors vraie pour n ∈ Z.
D’où P est vérifié grace au principe de contraposé.

3.5 ) Intervalles de l’ensemble R

DÉFINITION (Intervalles bornés, intervalles non bornés)

Soient a, b ∈ R avec a ≤ b.

❏ On appelle intervalle borné les éléments de la forme

➩ [a; b] = {x ∈ R | a ≤ x ≤ b}
➩ [a; b[= {x ∈ R | a ≤ x < b}
➩ ]a; b] = {x ∈ R | a < x ≤ b}
➩ ]a; b[= {x ∈ R | a < x < b}

❏ On appelle intervalle non borné les éléments de la forme

➩ [a; +∞[= {x ∈ R | a ≤ x}
➩ ]a; +∞[= {x ∈ R | a < x}
➩ ]−∞, a] = {x ∈ R | a ≥ x}
➩ ]−∞, a[= {x ∈ R | a > x}

❏ a, b sont les bornes finies de l’intervalle

❏ −∞,+∞ sont les bornes infinies de l’intervalle
❏ Si une des bornes finie d’un intervalle est compris dans l’intervalle alors on dit que ce

dernier est fermé .

❏ A l’inverse, si aucune des bornes finies ne sont contenues dans l’intervalle il est dit ouvert .
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Remarque

• Les intervalles [a; b] sont appelés segments.
• Lorsque a < b alors :

◦ b− a est la longueur de l’intervalle

◦ a+b
2

est le centre de l’intervalle

Propriétés admises
Reprenons les parties de R évoquées il y a quelques parties :

• R∗ = {x ∈ R | x ̸= 0} =]−∞; 0[∪]0; +∞[

• R− = {x ∈ R | x ≤ 0} =]−∞; 0]

• R+ = {x ∈ R | x ≥ 0}
• R∗

− = {x ∈ R | x < 0} =]−∞; 0[

• R∗
+ = {x ∈ R | x > 0} =]0;+∞[

Remarque [1; +∞[ est un intervalle fermé, alors que ]1; +∞[ est un intervalle ouvert.

3.6 ) Éléments particuliers d’une partie de R

DÉFINITION (majorant)

Soit A une partie non-vide de R (A ̸= ∅).
On appelle α le majorant de A si :

∀x ∈ A x ≤ α

Si A admet un majorant elle est dit majorée.

(A majorée) ⇐⇒ ∃α ∈ R | ∀x ∈ A, x ≤ α︸ ︷︷ ︸
A est majorée par α

DÉFINITION (minorant)

Soit A une partie non-vide de R (A ̸= ∅).
On appelle α le minorant de A si :

∀x ∈ A x ≥ α

Si A admet un minorant elle est dit minorée.

(A minorée) ⇐⇒ ∃α ∈ R | ∀x ∈ A, x ≥ α︸ ︷︷ ︸
A est minorée par α

Remarque A est dite bornée si elle est à la fois minorée et majorée.

Proposition
Il peut arriver que des parties possèdent une infinité de minorants (resp. majorants).
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Exemple
Considérons A = {1, 2, 3} une partie de N.
Par définition de majorant et de minorant :

• x ∈ R minorant si ∀y ∈ A, x ≤ y

• x′ ∈ R majorant si ∀y′ ∈ A, x′ ≥ y′

Le plus petit élément de A est 1 est le plus grand 3. Ainsi tout x ≥ 3 est un majorant et tout x ≤ 1
est un minorant.
D’où le fait qu’il y a comme minorants ] − ∞; 1] et comme majorants [3; +∞[. Il en existe donc
une infinité.

Propositions, cas particuliers
Soit A une partie non vide de R.

• Si A est majorée alors elle admet une infinité de majorants.
• Si A est minorée elle admet une infinité de minorants.

Soit B = ∅
Alors minorants = majorants = R

Remarque N n’est pas majorée. R et Z ne sont pas minorés ni majorés.

3.7 ) Preuve d’une propriété

3.7.1 ) Propriété universelle

DÉFINITION (preuve)

Soit E un ensemble et P un prédicat sur les éléments de E.
Considérons la propriété

∀x ∈ E, P(x)

Pour montrer que P est vraie
1. Choisir un élément de E de manière arbitraire
2. Puis on montre que P(x) est vraie

Le raisonnement commencera ainsi :

Soit x ∈ E.
Montrons que la propriété P(x) est vraie.
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Exemple
Soit A = [−1; 3[
Montrer que 5 est un majorant de A revient à montrer que

∀x ∈ A, x ≤ 5

Soit x ∈ A
Montrons que x ≤ 5
Puisque x ∈ A, alors −1 ≤ x < 3 et 3 < 5 donc tout x ∈ A < 5.
5 majore bien l’ensemble A.

3.7.2 ) Propriété existentielle, preuve constructive

DÉFINITION (preuve constructive)

Soit E un ensemble et P un prédicat sur les éléments de E.
Considérons la propriété existentielle suivante :

∃x ∈ E tel que P(x)

• Une première solution serait de trouver un élément dans E puis de montrer qu’il satisfait la
propriété.

Dans ce cas on commencera par :

Posons x = . . .
Montre que pour x ∈ E, la propriété est vraie

Remarque Cette méthode fonctionne bien lorsque la construction de x n’est pas trop dur.

Exemple
Montrons que A = {t2 + 1 | t ∈ R} est minorée.
Cela revient alors à montrer que

∃α ∈ A | ∀x ∈ A, x ≥ α

Une analyse rapide de A permet de déterminer de tête des minorants.
Posons α = 0
Montrons que 0 est un minorant de A
Soit x ∈ A alors ∃t ∈ R tel que x = t2 + 1
Or

t2 ≥ 0

t2 + 1 ≥ 1 ≥ 0

Ainsi x ≥ α. Donc α est un minorant de A ;
A est belle est bien minorée.
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3.8 ) Retour sur majorant et minorant

Remarque La démonstration sera revue lors des séances de tutorats avec d’autres
exemples.

DÉFINITION (non majoration, non minoration)

Soit A une partie de R, d’ailleur avec le chapitre 1 sur les ensembles, vous savez que l’on peut
noter A ⊂ R.
D’après la négation des propriétés de majorant et de minorant :

❏ A n’est pas majorée si

∀m ∈ R, alors ∃x ∈ A tel que x > m

❏ A n’est pas minorée si

∀m ∈ R, alors ∃x ∈ A tel que x < m

Exemple, preuve de la non majoration
Soit A = {t2 + 1 | t ∈ R}
Montrer que A n’est pas majorée revient à montrer que pour tout m trouvé, il existe toujours un
élément de A plus grand que m.

∀m ∈ R, ∃x ∈ A | x > m

Soit m ∈ R.
Montrons qu’il existe x ∈ A tel que x > m
Il est impossible vu la constitution de l’ensemble de trouver de tête un x ∈ A tel que x > m, il
faut donc choisir un x qui dépend de m.
Posons x = m2 + 1
Par le principe de contraposée montrons que x ∈ A et x > m Comme m ∈ R alors m2 + 1 ∈ A
Ainsi, x ∈ A
Si x = m alors on a m = m2 + 1

m2 −m+ 1 = 0

En calculant ∆ on trouve ∆ = −3 ≤ 0, on en déduit que m2 −m+ 1 est strictement positif (vous
pouvez effectuer le tableau de signes).
Alors m2 −m+ 1 > 0 ⇐⇒ m2 + 1 > m
Donc A n’admet pas de majorant.



K. Reine

3.9. EXTREMUMS DES PARTIES DE R 33

DÉFINITION (prouver l’implication, l’équivalence)

Soient Pet Q deux propriétés.

❏ Pour montrer P =⇒ Q
◦ On suppose que P est vraie
◦ On montre que Q l’est aussi

❏ Pour montrer P ⇐⇒ Q
◦ On montre P =⇒ Q
◦ Puis on montre Q ⇐⇒ P

3.9 ) Extremums des parties de R

DÉFINITION (élément maximum)

Soit A ̸= ∅, une partie de R.
On note α ∈ R appelé plus grand élément ou élément maximum de A si :

α ∈ A

et
∀x ∈ A, x ≤ α

Autrement dit, α est l’élément maximum de A si :

❏ α est un élément de A

❏ Tous les autres éléments de A sont plus petit ou égal à α

Il est noté max(A) = α.

DÉFINITION (élément minimum)

Soit A ̸= ∅, une partie de R.
On note α ∈ R appelé plus petit élément ou élément minimum de A si :

α ∈ A

et
∀x ∈ A, x ≥ α

Autrement dit, α est l’élément minimum de A si :

❏ α est un élément de A

❏ Tous les autres éléments de A sont plus grand ou égal à α

Il est noté min(A) = α.
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Propriété, preuve d’unicité d’un extremum.
Le but de cette démonstration était de prouver qu’il n’y a qu’un maximum (resp. minimum).
Soit A ⊂ R (une partie de R).
Supposons que A possède au moins un maximum.
au moins : un implique 1 ou plus de maximum.
Soient α1 et α2 deux maximums de A.
Alors :
α1 ∈ A

et ⇐⇒ α1 ≤ α2

α2 majore A


α2 ∈ A

et ⇐⇒ α2 ≤ α1

α1 majore A

Ainsi le fait que α1 ≤ α2 ∧ α2 ≤ α1 implique nécessairement que α1 = α2

Ainsi, A en prenant deux maximums distrincts de A on a montré qu’ils étaient égaux, d’où A
n’admet qu’un maximum.

DÉFINITION (borne inférieure)

Soit A une partie de R et α ∈ R.
On note α ∈ R une borne inférieure de A si

α = inf(A) ⇐⇒


α est un minorant de A

et
α est le plus grand minorant de A

La borne inférieure de A est notée inf(A)

DÉFINITION (borne supérieure)

Soit A une partie de R et α ∈ R.
On note α ∈ R une borne supérieure de A si

α = sup(A) ⇐⇒


α est un majorant de A

et
α est le plus petit majorant de A

La borne supérieure de A est notée sup(A)

Remarque
• Une borne n’est pas forcément un élément de A

• Si A possède un plus grand élément, c’est aussi la borne suppérieure de A.
• Si A possède un plus petit élément, c’est aussi la borne inférieure de A.

Exemple, Soit A = [−1; 3[

• Le plus petit élément de A est −1, alors c’est aussi la borne inférieure de A.
On note min(A) = inf(A) = −1

• Puisque l’intervalle est ouvert, il ne possède pas de plus grand élément. Mais, tout élément
supérieur ou égal à 3 est un majorant.
Ainsi le plus petit des majorants est 3 qui est donc la borne supérieure, on note sup(A) = 3.
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Remarque Si les borne existent, elles sont uniques.

Proposition
• Tout partie non-vide et majorée de R possède une borne supérieure.
• Toute partie non-vide et minorée de R possède une borne inférieure.

3.10 ) Opérations sur les réels

DÉFINITION (partie entière)

Soit x ∈ R.
La partie entière du nombre x notée E(x) ou ⌊x⌋ vérifie :

E(x) ∈ Z et E(x) ≤ x ≤ E(x) + 1

Propriétés, partie entière

• ∀x ∈ R, x− 1 < E(x) ≤ x

• E(x) est le plus grand entier inférieur ou égal à x.
• Soit n ∈ Z. Alors ∀x ∈ [n;n+ 1[, E(x) = n

DÉFINITION (valeur absolue)

Soit x ∈ R.
La valeur absolue du nombre x, notée |x| vérifie :

|x| =

{
x si x ≥ 0

−x si x < 0

Propriété, valeur absolue
∀x, y ∈ R

• |x| ≥ 0, alors |x| = max{x,−x}
•
√
x2 = |x|

• ∀a ≥ 0, |x| ≤ a ⇐⇒ −a ≤ x ≤ a

• |x| ≥ 0, valeur absolue positive

• |x| = 0 alors x = 0

• | − x| = |x|
• |xy| = |x||y|
• |x+ y| ≤ |x|+ |y| inégalité triangulaire

Exemple

| − 2| = |2| = 2
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CHAPITRE 4

LES SUITES

4.1 ) Généralités sur les suites

4.1.1 ) Rappels et bases sur les suites

Remarque
• Soit f : R 7→ R une application, on dit qu’elle est continue.
• Soit u : N 7→ R une application qui prend comme valeurs des entiers naturels

et renvoi un réel, on dit que l’application est discrète.

DÉFINITION (Suite)

Soit E un ensemble alors,
toute application de la forme u : N 7→ E est appelée suite d’éléments de E.
Une suite se note (un)n∈N où :

❏ un est le terme général de la suite
❏ n ∈ N est appelé le rang (ordre, ou indice) de la suite
❏ u(n) = un est le terme de rang n

Remarque

Une suite (un)n∈N est une donnée contenant des éléments de E dans un ordre
précis correspondant à un n-uplet de la forme :

(u0, u1, . . . , un)

où un est le (n+1)e terme de la suite (un)n∈N. Puisque l’on commence à n = 0.

Propriété du début d’une suite
Il peut arriver que certaines suites soient définies à partir d’un certain rang, par forcément 0.
L’ensemble des rangs se trouvent ainsi dans l’ensemble Np = {n ∈ N | n ≥ p}, en français,
l’indice n est un entier suppérieur ou égal à p.
Cette suite ce note alors (un)n≥p = (un)n∈Np

Ainsi, le premier terme de la suite sera noté up.

36
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Remarque
Soit E ⊂ N alors,

• Toute suite u : E 7→ R est appelée suite réelle.
• Toute suite u : E 7→ C est appelée suite complexe.

Exemple
La suite (un)n∈N définie par :

u : N −→ M2(R)

n 7−→ un =

n 0

0 1


Ainsi, cette suite n’est pas une suite numérique !
Puisque les éléments de u ne sont ni dans R ni dans C mais dans les métrices à coefficients
réels de taille 2× 2.

Rappel de cours

L’ensemble K
Soit x ∈ K alors x est soit un réel (x ∈ R) ou soit x est un complexe (x ∈ C). acquis du module
”Algèbre de base”

Exemples
• Soit c ∈ K alors la suite (cn)n∈N est appelée suite constante.
• Soit f : n 7→ n2 + 1 une application de N à valeurs dans N. Cette dernière est une suite réelle

où :

◦ Elle est notée (n2 + 1)n∈N
◦ Les premiers termes de la suite sont (1, 2, 5, 10, . . .)
◦ Le terme de rang 3 est donné par u3 = 10 car u3 = 32 + 1 = 9 + 1 = 10

• Soit g : n 7→ 1
n

une application bien définie si n ̸= 0 ainsi, f est une application de N∗ à valeurs
dans R.
Sous forme de suite, on note (in)n∈N∗ = (in)n≥1 =

1
n

où u1 = 1 et u5 =
1
5

La suite n’est pas définie pour n = 0, le résultat n’existe pas, ainsi le premier terme est i1.
• Soit r : n 7→

√
n− 2

Par définition,
√
x est définie ∀x ∈ R+ ainsi rn est définie ∀n ≥ 2.

• La suite (in)n∈N est une suite complexe de premiers termes (1, i,−1,−i, . . .).

Proposition - égalité de deux suites
Soit (un)n∈N et (vn)n∈N deux suites numériques.
On dit que u et v sont égales si et seulement si tous leurs termes sont égaux un à un.
On note :

((un)n∈N = (vn)n∈N) ⇐⇒ (∀n ∈ N, un = vn)

Remarque On peut généraliser cette définition à toute les suites commençant à un indice
différent de 0.
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Exemple
Déterminer si deux suites sont égales
Soit (

1

n

)
n∈N∗

et
(

1

n+ 1

)
n∈N

En vrai, je suis d’accord avec vous, de vue ces deux suites ont l’air égales... Mais en fait non !(
1

n

)
1

= 1 et
(

1

n+ 1

)
1

=
1

2
Les deux termes sont différents alors qu’ils sont tous deux de rang 1, ainsi les suites du dessus
ne sont pas égales.

4.1.2 ) Opérations sur les suites

Propriétés - Opérations sur les sommes
Soient (un)n∈N et (vn)n∈N deux suites et λ ∈ R alors,

• Somme : (un)n∈N + (vn)n∈N = (un + vn)n∈N
• Produit par un scalaire : λ(un)n∈N = (λun)n∈N
• Produit : (un)n∈N × (vn)n∈N = (un × vn)n∈N

4.2 ) Les suites récurrentes

4.2.1 ) Suite définie par récurrence

DÉFINITION (suite défine par récurrence)

Soit E un ensemble et f : E 7→ E une application.
On considère la suite (un)n∈N définie par :

u0 ∈ E, et ∀n ∈ N, un+1 = f(un)

Alors (un)n∈N est dite définie par récurrence .
Autrement dit, une suite est définie par récurrence lorsque :

• Le ou les premiers termes sont définis (= donnés)
• Les termes suivants sont définis en fonction du ou des précédants

Exemple, La suite de fibonnacci
Soit (un)n∈N la suite où

u0 = 0, u1 = 1 et un+1 = un + un−1

est la suite de fibonnacci, définie par récurrence.
Ainsi ses premiers termes sont :

(0, 1, 1, 2, 3, 5, 8, . . .)
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4.2.2 ) Notion de suite arithmétique

DÉFINITION (suite arithmétique)

Soit (un)n∈N une suite.
On dit que un est une suite arithmétique lorsque chaque terme se déduit du précédant en
ajoutant toujours le même nombre. Généralement on note ce nombre r ∈ R et on l’appelle la

raison de la suite.
On note plus rigoureusement :

u0 ∈ R, r ∈ R et ∀n ∈ N, un+1 = un + r

où on a :

❏ r est la raison de la suite
❏ u0 est le premier terme de la suite

Remarque

❍ La raison représente en fait la différence entre deux termes consécutifs.
Ainsi, on note :

r = un+1 − un

Propriété - Variation de suite arithmétique
Soit (un)n∈N une suite arithmétique de raison r ∈ R alors :

➤ Si r > 0 alors la suite est croissante.
➤ Si r < 0 alors la suite est décroissante.
➤ Si r = 0 alors la suite est constante.

Propriété - Terme général d’une suite arithmétique
La définition des termes suivants dans une suite arithmétique dépend du premier terme de la
suite :

➤ Si u0 est le premier terme alors un = u0 + n× r

➤ Si u1 est le premier terme alors un = u1 + (n− 1)r

➤ En généralisant le second aspect,
Si up est le premier terme avec p ∈ N alors un = up + (n− p)r

Exemple
Soit (un)n∈N une suite arithmétique de raison r = 2 et de premier terme u0 = 3.
Alors :

➢ un = u0 + nr = 3 + 2n

➢ un+1 = un + 2

u1 = u0 + 2× 1 = 3 + 2 = 5 et puis u10 = u0 + 10× 2 = 3 + 20 = 23

On peut donc déterminer les premiers termes de un facilement.
Et, puisque r > 0 alors la suite (un)n∈N est croissante.
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DÉFINITION (Somme des n-premiers termes)

Soit (un)n∈N une suite arithmétique de raison r ∈ R et de premier terme up avec p ∈ N alors, la
somme des n−premiers termes de la suite ici notée Sun est donnée par :

Sun =
n

2
(up + un)

Dans la propriété précédante, on a vu que si le premier terme est up alors un = up + (n− p)r
Ainsi en substituant un :

Sun =
n

2
(up + un)

=
n

2
(up + up + (n− p)r)

=
n

2
(2up + (n− p)r)

4.2.3 ) Notion de suite géométrique

DÉFINITION (suite géométrique)

Soit (un)n∈N une suite.
On dit que un est une suite géométrique lorsqye chaque terme se déduit du précédant en
multipliant toujours par le même nombre. Généralement on note ce nombre q ∈ R et il est

appelé raison de la suite.
D’une manière plus rigoureuse, on note :

u0 ∈ R, q ∈ R et ∀n ∈ N, un+1 = q × un

où on a :

❏ q la raison de la suite
❏ u0 le premier terme de la suite

Remarque

❍ La raison représente le quotient entre deux termes consécutifs.
On note alors :

q =
un+1

un

Propriété - Variation de suite géométrique
Soit (un)n∈N une suite géométrique de raison q ∈ R alors :

➤ Si |q| > 1 alors la suite diverge.
➤ Si |q| < 1 alors la suite converge vers 1.
➤ Si q = 1 alors la suite est constante.
➤ Si q = −1 alors la suite oscille entre deux valeurs.
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Propriété - Terme général d’une suite géométrique
La définition des termes suivants dans une suite géométrique dépend du premier terme de la
suite :

➤ Si u0 est le premier terme alors un = u0 × qn

➤ Si u1 est le premier terme alors un = u1 × qn−1

➤ En généralisant le second aspect,
Si up est le premier terme avec p ∈ N alors un = up × qn−p

Exemple
Soit (un)n∈N une suite géométrique de raison q = 3 et de premier terme u0 = 2.
Alors :

➢ un = 2× 3n

➢ un+1 = un × 3

u1 = u0 × 3 = 2× 3 = 6 et ducoup u10 = 2× 310 = 2× 59049 = 118098

On a donc réussi a déterminer les termes suivants facilement.
Et, puisque |q| = 3 > 1 alors la suite diverge.

Rappel de cours
Notion de divergence
Lorsque l’on dit qu’une suite diverge en gros ça veut dire que les termes un à un s’éloignent
infiniment d’une valeur fixe au fur et à mesure qu’on avance dans la suite.

➢ Divergence vers +∞
➢ Divergence vers −∞

DÉFINITION (Somme des premiers termes d’une suite géométrique)

Soit (un)n∈N une suite géométrique de raison q ∈ R et de premier terme up avec p ∈ N alors la
somme des n−premiers termes de la suite notée ici Sun est donnée par :

❏ Si q = 1, la suite est croissante

Sun = n× up

❏ Si q ̸= 1 alors la somme de sn−premiers termes est donnée par :

Sun = up ×
1− qn

1− q

Remarque

Soit (un)n∈N la suite définie par :

❍ u0 = 1

❍ ∀n ∈ N, un+1 = n× un

Cette suite n’est pas récurrence car la fonction f dépend de n et de un.
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Exemple

∀n ∈ N, un+1 =
1

un

− 1

L’application de récurrence f sous-jacente est donnée par

f : R∗ −→ R

x 7−→ 1

x
− 1

Or, ici u0 = 1 et u1 = 0 il est donc impossible de définir u2.

Remarque Il faut vérifier par une preuve par récurrence que ∀n ∈ N la fonciton f(un) à
ses valeurs dans l’ensemble défini.

DÉFINITION (Preuve par récurrence)

Considérons une propriété P(n) pour tout n ∈ N, et soit n0 ∈ N.

1. Définir la propriété P(n)
Soit P(n) la propriété ” . . .”.

2. INITIALISATION
Fixer un n0 et montrer que P(n0) est vraie.
On pose n0 = . . ., montrons que la propriété P(n0) est vraie.

3. HÉRÉDITÉ
En supposant que pour un n ≥ n0 fixé, la propriété P(n) est vraie. Montrer que la propriété
P(n+ 1) est elle aussi vérifiée.
Soit n ≥ n0, on suppose la propriété P(n) vraie. On chercher à montrer que la propriété
P(n+ 1) l’est également.

4. CONCLUSION
Une phrase pour conclure en disant que la propriété P(n) est vraie pour tout n ≥ n0.

Exemple

Considérons : un =

u0 = 10

un+1 = 1 +
1

un − 1
Montrons par récurrence que ∀n ∈ N, un > 1.

1. On pose P(n) = ”un > 1”

2. Pour n = 0, u0 = 10 > 1 alors la propriété est vraie pour n = 0

3. Supposon P(n) vraie montrons P(n+ 1)
Par hypothèse de récurrence, un > 1, d’où un − 1 > 0

1

un − 1
> 0 ⇐⇒ un+1 = 1 +

1

un − 1
> 0 + 1 = 1

Ainsi, P(n+ 1) est vraie.
4. D’après le principe de récurrence, on a montré que ∀n ∈ N, un > 1.

Donc la suite (un)n∈N est bien définie.
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4.2.4 ) Ordre d’une suite récurrence

DÉFINITION (Ordre)

Soit (un)n∈N une suite définie par récurrence. Le nombre de termes qui construisent la suite est
appelé ordre de la suite récurrente.

Exemple, Suite de Fibonnacci
Soit (un)n∈N la suite où

u0 = 0, u1 = 1 et un+1 = un + un−1

L’ordre de cette suite est de 2, car u0 et u1 construisent la suite.

4.3 ) Propriétés sur les suites

4.3.1 ) Suites monotones

Propriétés - Monotonie de suite
Soit (un)n∈N une suite.

➤ (un)n∈N est dite croissante si

∀n ∈ N, un ≤ un+1

➤ (un)n∈N est dite strictement croissante si

∀n ∈ N, un < un+1

➤ (un)n∈N est dite décroissante si

∀n ∈ N, un ≥ un+1

➤ (un)n∈N est dite strictement décroissante si

∀n ∈ N, un > un+1

DÉFINITION (suite monotone)

Soit (un)n∈N une suite, elle est dite monotone si et seulement si elle respecte une des conditions
suivantes.

❏ Elle est constante
❏ Elle est croissante
❏ Elle est décroissante
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Remarque

❍ Une suite est dite constante ou stationnaire si tous ces termes sont égaux,
on note ∀n ∈ N, un = un+1

❍ La notion de suite complexe croissante (resp. décroissante) n’a aucun sens.
❍ La notion de monotonie peut être valide à partir d’un certain rang.

Proposition - Étudier la monotonie d’une suite
Soit (un)n∈N une suite réelle.
Il existe trois méthodes pour déterminer la monotonie d’une suite :

➤ ∀n ∈ N, étudier le signe de un+1 − un

➤ ∀n ∈ N, vérifier que un > 0 et comparer
un+1

un

par rapport à 1.

➤ Étudier les variations de la fonction f sous-jacente : un = f(n)

Exemple
Soit la suite (un)n∈N = n2.
Nous allons étudier le signe de un+1 − un

➢ un = n2

➢ un+1 = (n+ 1)2

Alors on a :

un+1 − un = (n+ 1)2 − n2

= n2 + 2n+ 1− n2

= 2n+ 1

Étudions le signe du résultat :
Par définition, n ∈ N alors n ≥ 0
Ainsi n ≥ 0 ⇐⇒ 2n ≥ 0 ⇐⇒ 2n+ 1 ≥ 1 > 0.
La suite (un)n∈N est donc une suite croissante.

Exemple
Soit q > 0 et (qn)n∈N.
Puisque q > 0, alors ∀n ∈ N on a qn > 0
De plus,

qn+1

qn
=

qn × q

qn
= q

Ainsi,

❍ Si 0 < q < 1, alors la suite est décroissante
❍ Si q = 1 alors la suite est stationnaire
❍ Si q > 1, la suite est croissante

Rappel de cours

Propriété sur les puissances

xa+b = xa × xb
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4.3.2 ) Majoration et minoration d’une suite

DÉFINITION (suite majorée, suite minorée)

Soit (un)n∈N une suite réelle.

❏ La suite (un)n∈N est majorée si il existe M ∈ R tel que, pour tout n ∈ N, un ≤ M .

(un majorée) ⇐⇒ ∃M ∈ R ∀n ∈ N, un ≤ M

❏ La suite (un)n∈N est minorée si il existe M ∈ R tel que, pour tout n ∈ N, un ≥ M .

(un minorée) ⇐⇒ ∃M ∈ R ∀n ∈ N, un ≥ M

Exemple

Soit un =
1

n+ 1
avec n ≥ 0

Étudions cette suite.
Puisque n ≥ 0 alors n+ 1 ≥ 1 ainsi, 1

n+1
≤ 1 ce qui implique que la suite est majorée par 1.

DÉFINITION (suite bornée)

Une suite numérique (un)n∈N est dite bornée si

∃α ≥ 0, ∀n ∈ N, |un| ≤ α

Autrement dit imaginons deux barrières, α et −α. Pour qu’elle soit bornée, la suite ne doit pas
dépasser l’intervalle compris entre ces deux barrières.

Rappel de cours

Lien majorée, minorée
Une suite bornée est minorée et majorée.

Remarque

❍ Pour une suite complexe, |un| correspond au module.
❍ Pour une suite réelle, on dit qu’elle est bornée si elle est majorée par α et

minorée par −α.
❍ Pour une suite réelle minorée par m et majorée par M , elle est bornée par

max(|m|, |M |).

Exemple
La suite ( 1

n
)n∈N est bornée car majorée par 1 et minorée par 0.

Exemple
La suite (

√
n2 + 1− n)n∈N

➢ n2 + 1 ≤ n2 + 2n+ 1 = (n+ 1)2

➢ d’où 0 ≤
√
n2 + 1− n ≤

√
n2 + 2n+ 1− n = (n+ 1)− n = 1

➢ Ainsi, 0 ≤
√
n2 + 1− n ≤ 1
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Exemple
La suite (sin(n))n∈N
∀n ∈ N on a 0 ≤ | sin(n)| ≤ 1

Proposition - Opération de suites bornées

➤ La somme de deux suites bornées est une suite bornée.
➤ La différence de deux suites bornées et une suite bornée.
➤ Le produit de deux suites est une suite bornée.

4.4 ) Nature d’une suite

4.4.1 ) Limite d’une suite

DÉFINITION (limite)

Soit (un)n∈N une suite numérique.
On dit que un admet ℓ comme limite si

∀ϵ > 0, ∃n0 ∈ N, ∀n ∈ N, (n ≥ n0 =⇒ |un − ℓ| ≤ ϵ)

Remarque

❍ Il est possible d’adapter cette définition aux suites définies à partir d’un cer-
tain rang.

❍ La valeur des premiers termes d’une suite ne modifie pas la valeur de la
limite.

Démonstration - Recherche d’une limite
Soit un = c, c ∈ R.
Montrons que la suite (un)n∈N tend vers c, autrement dit, il faut que l’on montre que :

∀ϵ > 0, ∃n0 ∈ N, ∀n ∈ N, (n ≥ n0 =⇒ |un − c| ≤ ϵ)

Soit ϵ > 0. Posons n0 = 0

➤ Ainsi n0 ∈ N
➤ Montrons que ∀n ∈ N, si n ≥ n0, alors |un − c| ≤ ϵ

Soit n ∈ N, supposons que n ≥ n0

Montrons que |un − c| ≤ ϵ
On a |un − c| = |c− c| = 0 et puisque ϵ > 0 alors |un − c| ≤ ϵ

La suite admet bien c comme limite.



K. Reine

4.4. NATURE D’UNE SUITE 47

Proposition - Lemme
Soit x ∈ R alors la propriété suivante est vérifiée :

(∀ϵ > 0, |x| ≤ ϵ) =⇒ x = 0

Démonstration
Avec le raisonnement par contraposée, il faut montrer que :

x ̸= 0 =⇒ (∃ϵ > 0, |x| > ϵ)

Supposons que x ̸= 0. Montrons qu’il existe ϵ > 0 tel que |x| > ϵ

➤ Posons ϵ = |x|
2

➤ Comme x ̸= 0, ϵ > 0

➤ De plus comme 1 > 1
2
, alors, |x| > |x|

2
= ϵ

Par contraposée, la proposition est vraie.

Proposition - Unicité d’une limite
Soit (un)n∈N une suite numérique, alors si cette suite admet une limite finie, cette dernière est
unique.

Remarque Lorsque la suite (un)n∈N tend vers ℓ on notera lim
n→+∞

un = ℓ

Proposition - Limite et borne
Si la suite numérique admet une limite ℓ, alors la suite est bornée.
Ainsi à l’inverse toute suite non bornée d’admet pas de limite finie.

DÉFINITION (limite infinie)

Soit (un)n∈N une suite réelle.

❏ (un)n∈N tend vers +∞ si

∀A > 0, ∃n0 ∈ N, ∀n ∈ N, (n ≥ n0 =⇒ un ≥ A)

❏ (un)n∈N tend vers −∞ si

∀A > 0, ∃n0 ∈ N, ∀n ∈ N, (n ≥ n0 =⇒ un ≤ −A)

Les limites infinies ne sont valides que pour des suites réelles.

Propriété - Limite infinie

➤ Si une suite tend vers +∞ elle n’est pas majorée.
➤ Si une suite tend vers −∞ elle n’est pas minorée.
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DÉFINITION (convergence, divergence)

Soit (un)n∈N une suite numérique.

❏ (un)n∈N converge si elle admet une limite finie.

❏ Sinon elle diverge .

Remarque

❍ Toute suite convergente est bornée. (la réciproque est fausse)
❍ Une suite est divergente si elle n’a pas de limite finie (ex. (−1)n) ou si elle

admet une limite infinie.
❍ Étudier la nature d’une suite c’est déterminer/montrer si la suite converge

ou si elle diverge.

4.4.2 ) Opérations sur les limites

Propriété - Opérations sur les limites
Soient (un)n∈N et (vn)n∈N convergentes respectivement vers ℓu et ℓv.

➤ Soit λ un scalaire, alors (λun) converge vers λℓu.
➤ (un + vn) converge vers ℓu + ℓv
➤ (unvn) converge vers ℓuℓv
➤ Soit ℓu ̸= 0 alors ( 1

un
) converge vers 1

lu

Le tableau des limites usuelles sera donné ultérieurement...

Proposition - Th. de convergence
Soit (un)n∈N et (vn)n∈N deux suites réelles convergentes :

➤ Si, pour tout n ∈ N, un ≥ 0 alors lim
n→+∞

un ≥ 0

➤ Si, pour tout n ∈ N, un ≤ vn alors lim
n→+∞

un ≤ lim
n→+∞

vn

Proposition - Th. des gendarmes
Soit (un)n∈N, (vn)n∈N et (wn)n∈N trois suites réelles.
Supposons que, pour tout n ∈ N

un ≤ vn ≤ wn

Si les suites (un)n∈N et (wn)n∈N convergent vers la même limite, alors la suite (vn)n∈N converge et
on a,

lim
n→+∞

un = lim
n→+∞

vn = lim
n→+∞

wn
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Proposition - Th. de comparaison
Soient (un)n∈N et (vn)n∈N deux suites réelles.
Supposons que ∀n ∈ N, un ≤ vn

➤ Si lim
n→+∞

un = +∞, alors lim
n→+∞

vn = +∞

➤ Si lim
n→+∞

vn = −∞, alors lim
n→+∞

un = −∞

Théorème
Soit (un)n∈N une suite réelle.

➤ Si (un)n∈N est une suite croissante et majorée, alors la suite (un)n∈N converge et sa limite
est sup{un | n ∈ N}

➤ Si (un)n∈N est une suite décroissante et minorée, alors la suite (un)n∈N converge et sa
limite est inf{un | n ∈ N}

4.5 ) Comparaison asymptotique

DÉFINITION (suite négligeable)

Soient (un)n∈N et (vn)n∈N deux suites réelles telles que (vn)n∈N est non nulle.
La suite (un) est dite négligeable par rapport à la suite (vn) si :

lim
n→+∞

(
un

vn

)
= 0.

On note alors un = o(vn)

DÉFINITION (suite négligeable)

Soient (un)n∈N et (vn)n∈N deux suites réelles telles que (vn)n∈N est non nulle.
La suite (un) est dite équivalente par rapport à la suite (vn) si :

lim
n→+∞

(
un

vn

)
= 1.

On note alors un ∼ vn

Proposition - Suites équivalentes, négligeables
Soient (un)n∈N, (vn)n∈N et (wn)n∈N trois suites réelles telles que : ∀n ∈ N, un = vn + wn.
Alors :

un ∼ wn ⇔ wn = o(un)
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Proposition - Propriété des suites négligeables
Soit (un), (vn), (wn) trois suites réelles,

➤ Si un = o(vn) et vn = o(wn) alors un = o(wn)

➤ Si un = o(vn), alors ∀λ ∈ R∗, λun = o(vn)

➤ Si un = o(wn) et vn = o(wn), alors un + vn = o(wn)

➤ Si un = o(vn), alors unwn = o(vnwn)

DÉFINITION (Suite dominée)

Soient (un)n∈N et (vn)n∈N deux suites réelles positives.
un est dominée par la suite vn si :

∃C > 0, n0 ∈ N, ∀n ≥ n0 on a un ≤ Cvn

On notera alors un = O(vn)

Exemple, 5n− 3 = O(n2)
On cherche donc une constante C > 0 tel que 5− 3 ≤ n2 à partir d’un certain rang n0

5n− 3 ≤ Cn2

Par définition je sais que :

5n− 3 ≤ 5n ≤ n2 pour n0 ≥ 5

On vient donc de trouver le rang à partir duquel 5n− 3 ≤ n2 donc ∀n ≥ 5.
On a alors montrer que 5n− 3 = O(n2). Notre constante ici est C = 1

Exemple, 2n2 + 3n+ 1 = O(n2)
Je cherche un rang n0 et une constante C tel que :

∀n ≥ n0, 2n2 + 3n+ 1 ≤ Cn2

On vas alors décomposer notre expression :

2n2 ≤ 2n2pour n ≥ 0

3n ≤ n2pour n ≥ 3

1 ≤ n2pour n ≥ 1

à partir de là le rang n0 vas être celui pour lequel on respecte les 3 conditions des innéquations
donc ici n0 = 3.
Pour trouver notre constante C, reconstituons notre équation en additionnant chaque terme de
nos inéquations construites juste avant, on obtient :

2n2 + 3n+ 1 ≤ 2n2 + n2 + n2

≤ 4n2

Et là, on à réussi à écrire 2n2 + 3n+ 1 ≤ Cn2 avec C = 4
On vient donc de montrer que 2n2 + 3n+ 1 = O(n2) pour n0 = 3 et C = 4
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LES FONCTIONS RÉELLES

5.1 ) Généralités sur les fonction réelles

5.1.1 ) Notion de fonction et d’application

DÉFINITION (fonction réelle)

Une fonction réelle à valeurs réelles, ou plus simplement fonction réelle est un objet
mathématiques qui associe à tout nombre réel au plus un réel.

Remarque

La notation suivante :

f : x 7→ f(x)

Se lit plus simplement ”f est la fonction qui associe à chaque réel x le réel
f(x).

DÉFINITION (domaine de définition)

On appelle domaine de définition ou ensemble de définition de f , l’ensemble noté Df tel
que pour tout x ∈ Df , le réel f(x) existe.

Exemple
Prenons la fonction suivante :

f : x 7→ 1
x

Elle représente la fonction qui associe au réel x le réel 1
x
. Or, vous savez tous qu’une division

par 0 est impossible.
Alors le domaine de définition peut être donné de plusieurs manières :

Df = {x ∈ R | x ̸= 0}
=]−∞; 0[∪]0; +∞[

= R∗

51
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Prenons l’écriture générale suivante pour une fonction réelle :

f : Df → R
x 7→ y = f(x)

Ainsi ici on peut dire que :

• f est une fonction qui prend valeurs dans Df et renvoie des valeurs réelles.
• x est appelé antécédant de y par la fonction f .
• y est appelé image de x par f .
• L’ensemble de toute les images par f est appelé ensemble image et il est aussi noté f(Df ) =
{f(x) | x ∈ Df}

Exemple
On a :

Dcos = Dsin = R

Ce qui est vrai car vous n’êtes pas sans savoir que :

∀x ∈ R − 1 ≤ cos(x) ≤ 1 − 1 ≤ sin(x) ≤ 1

Ainsi, avec les rappels effectués juste au dessus on note aussi que

cos(Dcos) = sin(Dsin) = [−1; 1]

DÉFINITION (application réelle)

Toute application réelle f tel que D ⊂ R, son domaine de définition, est définie par :

f : D → R
x 7→ f(x)

On note aussi f : x 7→ f(x).

Remarque Dans une application tout élément de R peut posséder une, zéro ou plusieurs
antécédants. MAIS, tout élément de D doit forcément avoir une unique image.

5.1.2 ) Courbe représentative

DÉFINITION (courbe représentative)

Soit f une fonction réelle.
Dans un repère orthonormé, l’ensemble des points M de coordonnées (x, y) tels que x ∈ Df et
y = f(x) est appellé courbe représentative ou graphe de la fonction f et noté Cf définie par :

Cf = {(x, f(x)) | x ∈ Df}
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Exemple de courbe représentative

x

y

-3 -2 -1 1 2 3

1

4

9

La courbe suivante représente la fonction f : x 7→ x2, tracée dans
un repère orthonormé pour x ∈ [−3, 3].

Pour preshot le cours, on sait que ∀x ∈ R possède une seule
image pour la fonction f(x) = x2, on parle ainsi d’application.
On a aussi y = 4 possède deux antécédants x = ±2 ainsi
chaque image possède au moins un antécédant on parle alors
d’application surjective.

Remarque Les fonctions jugées usuelles sont a retrouvées dans une fiche annexe sur
Eureka.

5.1.3 ) Opérations sur les ensembles

DÉFINITION (somme de fonctions)

Soit f et g deux fonctions de domaine de définition Df et Gg respectivement, on note la
somme de deux fonctions :

f + g : x = f(x) + g(x) Df+g = Df ∩Dg

DÉFINITION (Produit par un scalaire)

Soit f une fonctions de domaine de définition Df on note le produit par un scalaire d’une fonc-
tion λf avec λ ∈ R défini par :

λf : x = λ× f(x) Dλf = Df

DÉFINITION (Produit de fonctions)

Soit f et g deux fonctions de domaine de définition Df et Gg respectivement, on appelle
produit de deux fonctions noté fg et défini par :

fg : x = f(x)× g(x) Dfg = Df ∩Dg



K. Reine

54 CHAPITRE 5. LES FONCTIONS RÉELLES

DÉFINITION (Inverse d’une fonction)

Soit f une fonctions de domaine de définition Df on note le l’inverse d’une fonction 1
f

défini par :

1

f
: x =

1

f(x)
D 1

f
= {x ∈ Df | f(x) ̸= 0}

DÉFINITION (Quotient de fonctions)

Soit f et g deux fonctions de domaine de définition Df et Gg respectivement, on appelle
Quotient de deux fonctions noté f

g
et défini par :

f

g
: x =

f(x)

g(x)
D f

g
= {x ∈ Df ∩Dg | g(x) ̸= 0}

DÉFINITION (Composition de fonctions)

Soient f et g deux fonctions réelles avec Df et Dg leur domaine de définition respectifs. On définit
la composée de deux fonctions comme suit :

x
f7−→ f(x)

g7−→ g(f(x)) = f ◦ g

Autrement dit, la composition de fonction notée f ◦ g revient simplement à calculer pour un xf

donné xg = f(xf ) puis ensuite de calculer g(xg).

Remarque
❍ Il faut vérifier que xg ∈ Dg avant de calculer g(xg)

❍ De manière général f ◦ g ̸= g ◦ f et Df◦g ̸= Dg◦f .
❍ L’opération ◦ n’est pas commutative.

Exemple
On considère deux fonctions f et g définies comme suit :

f : x → x2 − 4x et g : x → 1

x

Alors on a :

(g ◦ f)(x) = g(f(x))

= g(x2 − 4x)

=
1

x2 − 4x

à l’iverse on vas alors avoir :

(f ◦ g)(x) = f(g(x))

= f

(
1

x

)
=

(
1

x

)2

− 4

(
1

x

)
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5.1.4 ) Monotonie d’une fonction

DÉFINITION (Définitions générale)

Soit f une fonction réelle de domaine de définition Df ,

❏ La fonction f est dite croissante sur un intervalle I si :

∀x, xo ∈ I avec x ≤ x0 ⇒ f(x) ≤ f(x0)

Autrement dit lorsqu’à partir d’un certain rang x0 ≥ x on remarque que pour tous les autres
x ∈ I inférieurs à x0, on a f(x) ≤ f(x0).

❏ La fonction f est dite décroissante sur un intervalle I si :

∀x, xo ∈ I avec x ≤ x0 ⇒ f(x) ≥ f(x0)

❏ La fonction f est dite monotone sur I si elle est soit croissante soit décroissante sur I.

Remarque Lorsque les inégalités sont stricte on parlera alors de fonction strictement
croissante/décroissante.

Figure : Monotonie d’une fonction.

x

y

a

b

x

y
a

b
x

y

a b

5.1.5 ) Minoration et majoration d’une fonction

DÉFINITION (définitions générales)

Soit f une fonction réelle définie sur un domaine de définition Df .

❏ On dit que f est majorée si il existe M ∈ R tel que ∀x ∈ Df on a f(x) ≤ M .

❏ On dit que f est minorée si il existe M ∈ R tel que ∀x ∈ Df on a f(x) ≥ M .

❏ On dit que f est bornée si il existe α ∈ R tel que ∀x ∈ Df , f(x) ≤ |α|.
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5.2 ) Notion de limite de fonction

5.2.1 ) Généralités

DÉFINITION (R augmenté)

On note R l’ensembles des réels augmenté de −∞ à +∞.

R = R ∪ {−∞; +∞}

DÉFINITION (Limite d’une suite)

Soit f une fonction réelle définie sur une partie D ⊂ R, avec a ∈ R ou une borne de D et ℓ ∈ R.
On dit que f admet une limite ℓ en a notée :

lim
x→a

f(x) = ℓ

si et seulement si ∀(ux)x∈N une suite de réel définie sur D tel que lim
x→+∞

(ux)x∈N = a

lim
x→+∞

f((ux)x∈N) = ℓ

Autrement dit,

➤ peu importe comment on s’approche de a avec n’importe qu’elle suite (ux)x∈N, la suite des
images de f(ux)x∈N s’approche de ℓ.
On lit :

Lorsque x tend vers a alors f(x) tend vers ℓ.

Remarque
❍ Si f admet une limite alors elle est unique.
❍ Par contraposée : Si la limite de f n’est pas unique alors, cette dernière ne

possède pas de limite.

Exemple
La fonction sinus (rouge) et la fonction cosinus (bleue) n’ont pas de limite.

x

y

−7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7

−1

1
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Démonstration, unicité de la limite
Les suites (2nπ)n∈N et (2nπ + π

2
)n∈N tendent vers +∞.

Or, ∀n ∈ N, on a :

➤ sin(2π) = 0

➤ sin(2π + π
2
) = 1

Ainsi (2nπ)n∈N tend vers 0 et (2nπ + π
2
)n∈N vers 1.

D’où la fonction sinus n’admet pas de limite.

DÉFINITION (Limite gauche/droite)

❏ La fonction f admet ℓ comme limite à gauche de a, si pour toute suite (xn)n∈N de réel de
D∩]−∞; a[ qui tend vers a, (f(xn))n∈N tend vers ℓ.
Notons le :

lim
x→a−

f(x) = ℓ

❏ La fonction f admet ℓ comme limite à droite de a, si pour toute suite (xn)n∈N de réel de
D∩]a; +∞[ qui tend vers a, (f(xn))n∈N tend vers ℓ.
Notons le :

lim
x→a+

f(x) = ℓ

Proposition
➤ Si f est définie en a alors :

lim
x→a+

f(x) = lim
x→a−

f(x) = f(a) = ℓ

Autrement, on dit que f est définie en a si et seulement si la limite à gauche et à droite sont
égales à f(a).

➤ Si f n’est pas définie en a, alors :

lim
x→a+

f(x) = lim
x→a−

f(x) = ℓ

Du coup, si la limite a gauche et a droite sont égales à ℓ mais que ℓ ̸= f(a) alors la fonction
n’est pas définie en a.

Remarque

La notation a+ et la notation a−

❍ Lorsque l’on cherche la limite d’une fonction f en a+, en gros, on cherche ce
qu’il se passe pour f(x) lorsque x approche de a par valeurs suppérieures.

❍ Lorsque l’on cherche la limite d’une fonction f en a−, en gros, on cherche
ce qu’il se passe pour f(x) lorsque x approche de a par valeurs inférieures.
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Exemple (1), fonction en morceaux
On considère la fonction suivante :

f(x) =

{
x2 si x ≤ 2

4 si x > 2

On cherche à savoir si la fonction f est définie en 2.
Posons a = 2. Il vas alors falloir calculer la limite en 2− et la limite en 2+.

➤ Calculons la limite en 2−

Lorsque x approche vers 2 par valeurs inférieures alors x < 2 d’ou on a f(x) = x2

Ainsi lim
x→2−

f(x) = 22 = 4

➤ Calculons la limite en 2+

Lorsque x approche vers 2 par valeurs suppérieures alors x > 2 d’où on a f(x) = 4.
Ainsi lim

x→2+
f(x) = 4

➤ Calculons f(2)
Pour x = 2, on prend f(x) = x2

d’où f(2) = 22 = 4

Ainsi puisque lim
x→2+

f(x) = lim
x→2−

f(x) = f(2) = 4, la fonction f(x) est définie en a = 2.

Exemple (2) fonction continue
On considère la fonction

f : R → R
x 7→ 3x+ 1

On cherche à savoir si f est définie en 2.
Posons a = 2. Calculons la limite à gauche, puis à droite.

➤ Calculons la limite en 2−

Lorsque x approche de 2 par valeurs inférieures, f(x) = 3x+ 1
Ainsi lim

x→2−
f(x) = 3× 2 + 1 = 7

➤ Calculons la limite en 2+

Lorsque x approche de 2 par valeurs suppérieures, f(x) = 3x+ 1
Ainsi lim

x→2−
f(x) = 3× 2 + 1 = 7

➤ Calculons f(2)
On a f(2) = 3× 2 + 1 = 7

Puisque lim
x→2+

f(x) = lim
x→2−

f(x) = f(2) = 7 alors la fonction f est définie en a = 2.

Proposition, limite en a
Pour montrer qu’une fonction f n’admet pas de limite en a, il suffit en fait de montrer que la limite
à gauche est différente de la limite à droite.
On note :

lim
x→a+

f(x) ̸= lim
x→a−

f(x)
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Exemple
Prenons la fonction suivante :

f(x) =

{
1 si x < 0

2 si x > 0

➤ La limite en 0− est donnée par lim
x→0−

f(x) = 1

➤ La limite en 0+ est donnée par lim
x→0+

f(x) = 2

D’où lim
x→0+

f(x) ̸= lim
x→0−

f(x) ce qui implique que la fonction f n’admet pas de limite en a.

La limite de f(x) = 1
x

La fonction f est bien définie tant que le dénominateur est
différent de 0 donc si x ̸= 0. D’où Df = R\{0} = R∗

La fonction f admet alors une limite en 0− et en 0+

lim
x→0+

f(x) = +∞ et lim
x→0−

f(x) = −∞

Ainsi, la fonction f n’admet pas de limite en 0 car la limite à
gauche est différente de la limite à droite.

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

5.2.2 ) Opérations sur les limites

Remarque Les tableaux suivants sont à savoir.

lim
x→a

(f + g)(x)
lim
x→a

f(x)

ℓf +∞ −∞

lim
x→a

g(x)

ℓg ℓf + ℓg +∞ −∞

+∞ +∞ +∞ FI

−∞ −∞ FI −∞

lim
x→a

(f × g)(x)
lim
x→a

f(x)

0 ℓf ̸= 0 ±∞

lim
x→a

g(x)

0 0† 0† FI

ℓg ̸= 0 0† ℓfℓg ±∞†

±∞ FI ±∞† ±∞†
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lim
x→a

(f
g
)(x)

lim
x→a

f(x)

0 ℓf ̸= 0 ±∞

lim
x→a

g(x)

0 FI ±∞† ±∞†

ℓg ̸= 0 0†
ℓf
ℓg

±∞†

±∞ 0† 0† FI

lim
x→a

g(x) 0 ℓ ̸= 0 ±∞

lim
x→a

(1
g
)(x) ±∞† 1

ℓ
0†

Remarque

❍ FI ”Forme Indéterminée”, plusieurs méthodes pour les contrer.
Voici les formes indéterminées :

❏ +∞−∞ ❏ 0×∞ ❏
0

0
❏

∞
∞

❍ † Réalisation d’une étude de signe pour le déterminer.

Exemple
On cherche la lamite de la fonction x 7→ (x2 + 1)

√
x en 0.

Remarquons qu’on a f(x) = x2 + 1 et g(x) =
√
x, un produit de fonctions. Ainsi calculons la

limite des deux fonctions indépendament puis essayons de déduire la limite finale.

➤ lim
x→0

f(x) = 02 + 1 = 1

➤ lim
x→0

g(x) =
√
0 = 0

On a alors ℓf = 1 et ℓg = 0, ainsi d’après le tableau des limites d’un produit de fonction, on a :

lim
x→0

(x2 + 1)
√
x = 1× 0 = 0

Exemple

On cherche la limite en 3+ et en 3− de x 7→ x2 + 1

x− 3
Remarquons que nous avons un quotient de deux fonctions. Avec f(x) = x2 +1 et g(x) = x− 3.
On a :

lim
x→3−

f(x) = lim
x→3+

f(x) = 32 + 1 = 10

De plus :

➤ Pour x < 3 on a x− 3 < 0 donc lim
x→3−

g(x) = 0−

➤ Pour x > 3 on a x− 3 > 0 donc lim
x→3+

g(x) = 0+

D’après le tableau de la limite d’un quotient de deux fonctions avec ℓf = 10 et ℓg = 0± on a :

lim
x→3−

x2 + 1

x− 3
=

10

0−
= −∞ et lim

x→3+

x2 + 1

x− 3
=

10

0+
= +∞

Remarque

Pour le quotient de deux fonctions, il existe une phrase permettant de les
mémoriser :

IRI ORO ROI de RIO
où I = ±∞, R = ℓ et O = 0±
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On cherche la limite en −∞ de x 7→ x2 + x3

Remarquons que nous avons une somme de deux fonctions où f(x) = x2 et g(x) = x3.
Ainsi,

➤ lim
x→−∞

f(x) = x2 = +∞

➤ lim
x→−∞

f(x) = x3 = −∞

On obtient alors :

lim
x→−∞

x2 + x3 = +∞−∞ = FI

Pour résoudre une forme indéterminée, on va factoriser par le terme de plus haut degré qui ici
est x3.

x2 + x3 = x3

(
x2

x3
+

x3

x3

)
= x3

(
1

x
+ 1

)
Calculons la limite de 1

x
en −∞.

On a lim
x→−∞

1

x
= 0−

Ainsi on a :

lim
x→−∞

x2 + x3 = lim
x→−∞

x3

(
1

x
+ 1

)
= −∞(0 + 1) = −∞

La limite de x2 + x3 en −∞ est donc −∞.

5.2.3 ) Limite de fonctions composées

DÉFINITION (Limite de composition de fonctions)

Soient D,E deux parties de R avec f : D → R et g : E → R deux fonctions tels que f(D) ⊂ E.
Avec a ∈ R un élément ou une borne de D, b ∈ R un élément ou une borne de E et c ∈ R.
Ainsi :

lim
x→a

f(x) = b et lim
x→b

g(y) = c alors lim
x→a

(g ◦ f)(x) = c

Exemple

On considère la fonction x 7→
(
1 +

1

x

)2

.

Alors on a f ◦ g où :

➤ f(x) = 1 + 1
x

avec lim
x→0−

f(x) = −∞

➤ g(x) = x2 avec lim
x→−∞

g(x) = +∞

Ainsi, d’après la proposition précédante :

lim
x→0−

(
1 +

1

x

)2

= +∞
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Remarque

En cas d’indétemination, lorsque c’est possible on peut lever cette dernière
en transformant l’expression de la fonction de façon à simplifier et pouvoir
conclure :

❍ Mise en facteur du terme dominant
❍ Encadrement

5.3 ) Calcul de limites

5.3.1 ) Fonction négligeable

DÉFINITION (négligeable)

Soient f et g deux fonctions réelles définies sur D ⊂ R et a ∈ R un élément ou une borne de D
tel que lim

x→a
g(x) ̸= 0.

La fonction f est dite négligeable devant g au point a.
Si la limite du quotient des fonctions est nul pour limite en a.

f =
a
o(g) ⇐⇒ lim

x→a

f

g
(x) = 0

Exemple
Soient f(x) = x et g(x) = x2.
Montrons que f est négligeable devant g en +∞.

lim
x→+∞

f

g
(x) = lim

x→+∞

x

x2
= lim

x→+∞

1

x
= 0

Ainsi, on note alors f =
+∞

o(g)

5.3.2 ) Fonction équivalente

DÉFINITION (équivalence)

Soient f et g deux fonctions réelles définies sur D ⊂ R et a ∈ R un élément ou une borne de D
tel que lim

x→a
g(x) ̸= 0.

La fonction f est dite équivalente devant g au point a.
Si la limite du quotient des fonctions est égal à 1 pour limite en a.

f ∼
a
g ⇐⇒ lim

x→a

f

g
(x) = 1
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Exemple
Soient f(x) = x et g(x) = x+ 1.
Montrons que f est équivalente devant g en +∞.

lim
x→+∞

f

g
(x) = lim

x→+∞

x

x+ 1
= lim

x→+∞

x

x+ 1
x

= lim
x→+∞

1

1 + 1
x

= lim
x→+∞

1

1 + 0
= 1

Ainsi, on note alors f ∼
+∞

g

Proposition
Soit f et g deux fonctions équivalentes en un point a alors :

f ∼
a
g ⇐⇒ lim

x→a
f(x) = ℓ =lim

x→a
g(x)

Autrement dit, deux fonctions dites équivalentes partagent la même limite au point d’équivalence.

5.3.3 ) Rétrospective sur les polynômes

DÉFINITION (Polynôme)

Soit n ∈ N (entier naturel)
Une fonction polynôme de degré n est une fonction de la forme :

x 7→ anX
n + an−1X

n−1 + . . .+ a2X
2 + a1X + a0 =

n∑
k=0

akX
k

où an, . . . , a1, a0 sont les coefficients de degré n du polynôme, avec an ̸= 0.

Proposition
Soit n ∈ N et P une fonction polynôme définie par :

∀x ∈ R P (x) =
n∑

k=1

akX
k

où (ak)0≤k≤n est une famille de réels avec an ̸= 0.
Alors P (x) ∼

+∞
anX

n et ainsi

lim
x→+∞

P (x) = lim
x→+∞

anX
n =

{
+∞ si an > 0

−∞ si an < 0
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Exemple, [page 62]
On considère la fonction x 7→ x2 + x3, le calcul de cette fonction en −∞ aboutit à une forme
indéterminée.
Or ∀x ∈ R,

x2 + x3 = x3

(
1 +

1

x

)
et lim

x→−∞
1 +

1

x
= 1, aisni on a x2 + x3 ∼

−∞
x3

On en déduit donc que :

lim
x→−∞

x2 + x3 = lim
x→−∞

x3︸ ︷︷ ︸
équivalent

= −∞

5.3.4 ) Fraction rationnelle

DÉFINITION (fraction rationnelle)

On appelle fraction rationnelle toute fonction de la forme :

x 7→ P (X)

Q(X)

où P et Q sont des fonctions polynômes.

Proposition
Soient n,m ∈ N, et P , Q deux fonctions polynômes définies par :

∀X ∈ R P (X) =
n∑

k=0

akX
k Q(X) =

m∑
k=0

bkX
k

où (ak)0≤k≤n et (bk)0≤k≤m sont deux familles de réels avec an ̸= 0 et bm ̸= 0.
Alors on a :

P (X)

Q(X)
∼
+∞

an
bm

Xn−m

Ainsi :

lim
x→+∞

P (X)

Q(X)
= lim

x→+∞

an
bm

Xn−m =


±∞ si n > m
an
bm

si n = m

0 si n < m

où, le signe de la limite est donné par le signe de an
bm

.
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Exemple

Étudions la limite de x 7→ 1− 4x

x2 + 2
en +∞.

On a une forme indéterminée ∞
∞

Or d’après la proposition précédante :

x 7→ 1− 4x

x2 + 2
=

P (X)

Q(X)

Où :

➤ P (X) = 1− 4X ∼
+∞

−4X

➤ Q(X) = X2 + 2 ∼
+∞

X2

Ainsi on a :

lim
x→+∞

1− 4x

x2 + 2
= lim

x→+∞

−4x

x2
= lim

x→+∞

−4

x
= 0

5.3.5 ) Comparaison de fonctions usuelles
Soient α, β deux réels positifs.
Alors,

➤ lim
x→+∞

ln

xα
= 0

➤ lim
x→+∞

xα lnβ x = 0

➤ lim
x→+∞

eβx

xα

On note aussi :

lnβ x =
+∞

o(xα) et xα =
+∞

o(eβx)

Cela signifie en fait que :

➤ Les fonctions puissances dominent les puissances des fonctions logarithmique.
➤ Les puissances des fonctions exponentielles dominent les fonctions puissances.

Remarque
A savoir aussi :

❍ Limites remarquable en 0

❍ Limite de fonctions usuelles

5.3.6 ) Le théorème des gendarmes

DÉFINITION (Théorème)

Soient f, g, h trois fonctions définies sur D ⊂ R avec a ∈ R un élément ou une borne de D et
ℓ ∈ R.
Supposons que ∀x ∈ D, on a f(x) ≤ g(x) ≤ h(x)
Alors :

lim
x→a

f(x) =lim
x→a

h(x) = ℓ =⇒ lim
x→a

g(x) = ℓ
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Exemple

On cherche la limite de x 7→ 1

x
cos(x) en +∞.

Pour tout x ∈ R∗ on a −1

x
≤ 1

x
cos(x) ≤ 1

x
D’où :

➤ lim
x→+∞

−1

x
= 0

➤ lim
x→+∞

1

x
= 0

D’après le théorème des gendarmes on a lim
x→+∞

1

x
cos(x) = 0

5.4 ) Continuité d’une fonction

DÉFINITION (continuité)

Soient f une fonction définie sur un intervalle I ⊂ R et a ∈ I.
On dit que f est continue en a si et seulement si :

lim
x→a

f(x) = f(a)

Graphiquement :
Une fonction est continue sur un intervalle I

➤ Si le graphe de la fonction ne présente aucun saut
➤ Si il est possible de tracer la courbe sans lever le stylo

fonction continue en a fonction discontinue en a

x

y

f(a)

a

Cf

x

y

f(a)

a

Cf

Ainsi, on dit que f est continue sur I si et seulement si elle est continue en tout point a ∈ I.

DÉFINITION (continue à gauche à droite)

Soient f une fonction définie sur un intervalle I ⊂ R et a ∈ I.

❏ f est continue à gauche de a si lim
x→a−=f(a)

❏ f est continue à droite de a si lim
x→a+=f(a)



K. Reine

5.5. FONCTION DE CLASSE 67

5.5 ) Fonction de classe

DÉFINITION (fonction de classe C0)

Soit D un intervalle de R.
Une fonction f définie sur D est dite de classe C0 si et seulement si f est continue sur D.

Proposition
Soient f et g deux fonctions de classe C0.

➤ f + g est de classe C0

➤ fg est de classe C0

➤
f

g
est de classe C0

➤ λf est de classe C0 (λ ∈ R)
➤ f ◦ g est de classe C0

5.6 ) Prolongement par continuité

Soient :

➤ I un intervalle ouvert de R
➤ a ∈ I

➤ f une fonction définie et continue sur I\{a}
Si lim

x→a−
f(x) = lim

x→a+
f(x) = ℓ avec ℓ ∈ R.

Alors il existe une unique fonction réelle définie et continue sur I, et égale à f sur I\{a}.

Elle est appelée prolongement par continuité de f en a et correspond à la fonction
∼
f définie sur I

par :

∀x ∈ I, f(x) =

{
f(x) si x ̸= a

ℓ si x = a

Exemple du cours

Soit f : x 7→ sinx

x
f est une fonction définie sur R∗

Or lim
x→0

f(x) = 1 donc f est prolongeable par continuité en 0.

Son prolongement est la fonction g définie sur R par

∀x ∈ R, g(x) =


sinx

x
si x ̸= 0

1 si x = 0
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Proposition, Théorème des valeurs intermédiaires
Soit f une fonction continue sur un intervalle [a; b] avec (a, b) ∈ R2 et a < b.
Si f(a)f(b) < 0 alors ∃x ∈]a; b[ tel que f(c) = 0

Remarque Si la fonciton est strictement monotone sur [a : b] alors c est unique.

5.7 ) Dérivabilité

DÉFINITION (dérivabilité)

Soit f une fonction définie sur un intervalle ouvert i de R et a ∈ i.
La fonction f est dérivable si :

x 7→ f(x)− f(a)

x− a
admet une limite finie en a

Cette limite est appellée dérivée de f et est notée f ′(a).

Remarque

Si f est dérivable en a, alors la fonc-
tion f ′(a) représente la pente de la
droite de la tangeante à la courbe Cf
au point (a, f(a)) dont l’équation est
y = f(a) + f ′(a)(x− a).
La fonction :

x : 7→ f(x)− f(a)

x− a

est aussi appelée taux d’accroisse-
ment de la fonction f au point a.

x

y

f(x)

Exemple
Soit c ∈ R et f : x 7→ c
On note Df = R, le domaine de définition
Soit a ∈ R

∀x ∈ Rn{a},
f(x)− f(a)

x− a
=

c− c

x− a
= 0

On a donc lim
x→a

f(x)− f(a)

x− a
= 0

La fonction f est alors dérivable en a et sa dérivée en a est donnée par f ′(a) = 0

Proposition
Soit f une fonction.
Si f est dérivable en a ∈ R alors elle est aussi continue en a.
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DÉFINITION (Vocabulaire)

Soit f une fonction réelle définie sur un intervalle ouvert i de R.

❏ f est dite dérivable sur i si f est dérivable en tout points a ∈ i.
❏ Si f est dérivable sur i, alors la fonction x 7→ f ′(x) est définie sur i et est appelée

fonction dérivée de f et notée f ′.

❏ f est dite continûment dérivable sur i si :

■ f est dérivale sur i

■ f ′ est continue sur i

DÉFINITION (Dérivabilité à gauche, à droite)

Soient f une fontion définie sur un intervalle i ⊂ R et a ∈ R une borne de i.
❏ f est dérivable à gauche de a si la fonc-

tion x 7→ f(x)− f(a)

x− a
admet une limite fi-

nie à gauche de a :

lim
x→a−

f(x)− f(a)

x− a
= ℓ

❏ f est dérivable à droite de a si la fonction

x 7→ f(x)− f(a)

x− a
admet une limite finie à

droite de a :

lim
x→a+

f(x)− f(a)

x− a
= ℓ

Proposition
Soient f une fontion définie sur un intervalle i ⊂ R et a ∈ i.
f est dit dérivable en a si et seulement si :

➤ f est continue en a

➤ f admet une dérivée à gauche et à droite de a égales.

Toute fonction continûment dérivable sur une partie D ⊂ R est dite de classe C1 sur D.
On note alors f ∈ C1(D)
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Fonction (f ) Dérivée (f ′) Ensemble dériva.

k, k ∈ R 0 R

x 1 R

ax+ b a R

xn, n ∈ N∗ nxn−1 R

√
x

1

2
√
x

]0,+∞[

1

x
− 1

x2
R∗

1

xn

−n

xn+1
R∗

sin(x) cos(x) R

cos(x) − sin(x) R

Fonction Dérivée Condition

un nu′un−1 n ∈ N∗

exp(u) u′ exp(u) -

√
u

u′

2
√
u

u > 0

ln |u| u′

u
u ̸= 0

u u′ u ̸= 0

1

u
− u′

u2
u ̸= 0

sinu u′ cosu -

cos(u) −u′ sin(u) -

uα αu′uα−1 u > 0, α ∈ R∗

tan(u) u′ (1 + cos2(u)) u ̸= π
2
+ kπ, k ∈ Z

Fonction (f ) Dérivée (f ′)

u± v u′ ± v′

uv u′v + uv′

u

v

u′v − uv′

v2

u(v) u′(v)v′

u−1 =
1

u
− u′

u2

u2 2uu′
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DÉFINITION (dérivée seconde)

Soit f une fonction dérivable sur un intervalle i ouvert de R.
f est dite deux fois dérivable sur i si la dérivée f ′ de f est dérivable sur i.
Dans ce cas la dérivée de f ′ est appelée dérivée seconde de la fonction f .
Elle est notée f ′′, f (2) ou encore (f ′)′

DÉFINITION (dérivée n− ième)

Soit n ∈ N.
Une fonction f est dite n-fois dérivable sur i si il est possible de dériver n fois la fonction f sur i
selon le princive de récurrence suivant :{

f (k) = (f (k−1)′ ∀k ∈ 1;n

f (0) = f

Dans ce cas, la fonction f (n) est appelé dérivé d’ordre n de f sur i.

Remarque f est indéfiniment dérivable sur i, si ∀n ∈ N, f est n-fois dérivable sur i.

DÉFINITION (Fonction de classe Cn, C∞)

Soit f une fonction définie sur une partie D de R et n ∈ N.
Si f est n-fois dérivable sur D de dérivée n-ième f (n) continue sur D, alors la fonction f est dite
de classe Cn sur D.
On note : f ∈ Cn(D)

Soit f une fonction définie sur une partie D de R et n ∈ N.
Si f est indéfiniment dérivable sur D de dérivée n-ième f (n) continue sur D, alors la fonction f
est dite de classe C∞ sur D.
On note : f ∈ C∞(D)

5.8 ) Étude de variation d’une fonction

Proposition Étudier la variation d’une fonction
Soit f une fonction définie sur un intervalle ouvert i de R,

1. Déterminer le domaine de définition Df

2. Étudier la dérivabilité de f sur Df et calculer sa dérivée
3. Étudier le signe de la dérivée

➤ Si f ′ ≥ 0 sur i, alors f est croissante sur i
➤ Si f ′ ≤ 0 sur i, alors f est décroissante sur i
➤ Si f ′ = 0 sur i, alors f est constante sur i

4. Donner le tableau de variation de f

5. Calculer les limites de f aux bornes du domaine Df pour compléter le tableau
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Exemple
Pour tout x ∈ R∗

+,

f ′(x) = − 1

x2

Puisque f ′(x) < 0 alors la fonction f est décroissante sur R∗
+.

Proposition, signe de la dérivé
Soit f une fonction dérivable sur un intervalle ouvert I de R.

➤ Si f ′(x) ≥ 0 sur I, alors f est croissante sur I.
➤ Si f ′(x) ≤ 0 sur I, alors f est décroissante sur I.
➤ Si f ′(x) = 0 sur I, alors f est constante sur I.

5.9 ) Image d’un intervalle

DÉFINITION (image d’un intervalle)

Soient (a, b) ∈ R2 avec a ≤ b et f une fonction définie et continue sur [a; b].

❏ Si f est croissante sur [a; b], alors l’image de [a; b] par f vérifier :

f([a; b]) = [f(a); f(b)]

❏ Si f est décroissante sur [a; b], alors l’image de [a; b] par f vérifier :

f([a; b]) = [f(b); f(a)]

Remarque Ce résultat s’adapte aux intervalles ouverts et aux intervalles avec des bornes
infinies, en passant aux limites.

DÉFINITION (maximum, minimum)

Soit f une fonction définie sur un intervalle ouvert i de R, et x0 ∈ i.

❏ Le point x0 est appelé minimum de f sur
i si :

∀x ∈ i, f(x0) ≤ f(x)

❏ Le point x0 est appelé maximum de f sur
i si :

∀x ∈ i, f(x0) ≥ f(x)

Proposition
Soit f une fonction définie sur un intervalle ouvert i de R, et x0 ∈ i.

❍ Si f est une fonction dérivable en x0 et que x0 est un maximum/minimum de f sur i, alors
f ′(x0) = 0.

❍ On suppose que f est 2 fois dérivable sur i

■ Si f ′(x0) = 0 et f ′′ ≥ 0, alors x0 est un minimum de f sur i.
■ Si f ′(x0) = 0 et f ′′ ≤ 0, alors x0 est un maximum de f sur i.
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f x 7→ x x 7→ x2 x 7→ x3 x 7→ 1
x

x 7→ 1
x2 x 7→ 1

x3 x 7→
√
x x 7→ 1√

x

lim
x→−∞

f(x) −∞ −∞ −∞ 0− 0 0 ND ND

lim
x→0−

f(x) 0− 0+ 0− 0− +∞ −∞ ND ND

lim
x→0+

f(x) 0+ 0+ 0+ +∞ +∞ +∞ 0+ +∞

lim
x→+∞

f(x) +∞ +∞ +∞ 0+ 0+ 0+ +∞ 0+

Limite des fonctions usuelles

5.10 ) Exponentielle et logarithme

1 2 3 4

−4

−2

2

x

y

−4 −3 −2 −1 1

−1

1

2

3

4

x

y

DÉFINITION (La fonction ln(x))

La fonction logarithme népérien est l’unique fonction
qui s’annule en 1 et dont la dérivée est x 7→ 1

x
sur R+.

La fonction ln est définie, dérivable et croissante de R∗
+

dans R.

lim
x→0

ln(x) = −∞ lim
x→+∞

ln(x) = +∞

Sa dérivée , (ln(x))′ = 1
x

DÉFINITION (La fonction ex)

La fonction exponentielle notée exp, est l’unique fonc-
tion qui vérifie :

∀(x, y) ∈ R× R∗
+, y = exp(x) ⇔ x = ln(x)

exp est définie, dérivable et croissante de R en R∗
+.

lim
x→−∞

exp(x) = 0 lim
x→+∞

exp(x) = +∞

Sa dérivée est elle-même, (exp)′ = exp

Quelques règles et base à savoir sur les fonction ln et e.

➤ Le nombre exp(1) noté e s’appelle nombre exponentielle et e ∈ RnQ.
➤ ∀x ∈ R, ln(exp(x)) = x ainsi que ∀x ∈ R∗

+, eln(x) = x

➤ ln(1) = 0 ; ln(e) = 1 ; e0 = 1
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Proposition
x 7→ ln(x)

∀(x, y) ∈ (R∗
+)

2

➤ ln(xy) = ln(x) + ln(y)

➤ ln(
1

x
) = −ln(x)

➤ ln(
x

y
) = ln(x)− ln(y)

➤ ∀n ∈ N, on a ln(xn) = n× ln(|x|)

x 7→ ex

∀(x, y) ∈ R2

➤ exp(x+ y) = exp(x)× exp(y)

➤ exp(−x) =
1

exp(x)

➤ exp(x− y) =
exp(x)

exp(y)

➤ ∀n ∈ N, on a exp(nx) = (exp(x))n

DÉFINITION (en base a)

❏ Soit a ∈ R∗
+\{1}

Le logarithme en base a (loga) est la
fonction définie sur R∗

+ par :

∀x ∈ R∗
+, loga(x) =

ln(x)

ln(a)

❏ Soit a ∈ R∗
+

L’ exponentielle en base a (expa) est la
fonction définie sur R par :

∀x ∈ R, expa(x) = exp(x× ln(a))

❏ ∀x ∈ R et y ∈ R∗
+

noton yx = exp(x× ln(y)) le nombre y à la puissance x.

Proposition, les puissances
Soient a, b ∈ R∗

+ et x, y ∈ R.

➤ a0 = 1x = 0

➤ ax+y = axay

➤ ax−y =
ax

ay

➤ (ab)x = axbx

➤ ln(ax) = xln(a)

➤ a−x =
1

ax

➤ (ax)y = axy

➤ (
a

b
)x =

ax

bx
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CHAPITRE 6

RELATION BINAIRE

6.1 ) Introduction aux relations binaires

En mathématiques, une grande partie de l’étude des objets repose sur la compréhension des liens
qu’ils entretiennent entre eux. Par exemple, en arithmétique, on peut comparer avec la relation ≤, et en
géométrie, on peut étudier des figures ayant des propriétés similaire grâce à la relation d’égalité des
formes.
Une relation binaire est un concept fondamental permettant de décrire ces liens entre des éléments
d’un ensemble ou de plusieurs ensembles. Elle formalise des connexions entre les objets mathématiques
et sert de base à de nombreuses structures utilisées en algèbre, en logique et en informatique.
Par exemple, lorsqu’on dit ”3 est plus petit que 5”, on établi une relation entre ces deux nombres.
De même, dire que ”Pierre est ami avec Marie” exprime une relaiton sociale entre deux personnes.
Ces relations bien qu’appliquées à des contextes différents, peuvent être étudiées avec des outils
mathématiques communs.
Dans la suite, nous allons définir rigoureusement le concept de relation binaire, quels sont ses types et
propriétés, ainsi que des exemples concrêt de leur application.

6.2 ) Complément sur les ensembles

Rappel de cours
Partie d’un ensemble
Soit E un ensemble.
Alors l’ensemble des parties de E est noté P(E) :

P(E) = {A | A ⊂ E}

Exemple
Soit E = {0, 1, 2} alors on a :

P(E) = {∅, {0}, {0, 1}, {0, 2}, {1}, {1, 2}, {2}, {0, 1, 2}}

Remarque On peut même aller jusqu’à dire que P(E) contient tout ensemble étant inclu
ou égal à E, on note ⊆.

75
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DÉFINITION (Ensemble des applications)

Soient E et F deux ensembles.
On appelle ensemble des applications de E dans F noté F(E,F ) (ou FE) l’ensemble de
toutes les fonctions qui associent à chaque élément de E un unique élément de F .
Autrement dit, c’est l’ensemble des fonctions qui associe à tout élément de E un unique élément
de F .

Rappel de cours
Application
On spécifie à chaque fois associe un unique élément de F , puisque on parle de l’ensemble des
applications. Et pour rappel une application associe à chaque antécédant une seule image.

Rappel de cours

Le produit cartésien
Soit n ≥ 2 et E1, E2, . . . , En n-ensembles. On note le produit cartésien défini par :

E1 × E2 × . . .× En =
n∏

k=1

Ek = {(x1, x2, . . . , xn) | x1 ∈ E1, x2 ∈ E2, . . . , xn ∈ En}

On aura l’occasion de le revoir un peu plus tard.

Un peu de notation

➤ L’ensemble E × E × . . .× E︸ ︷︷ ︸
n−fois

peut aussi être noté En

➤ Lorsque l’on note ”Prenons x ∈ En”, cela revient simplement à dire que l’on prend un n − uplet
noté (x1, . . . , xn) où chaque élément xi avec i ∈ [1;n] appartient à E.

Rappel de cours
La notation n− uplet
On appelle n−uplet un objet mathématiques noté (x1, x2, . . . , xn) (ou (xi)1≤i≤n). Pour rappel ils sont
ordonnés ce qui signifique que (1, 2) ̸= (2, 1) contrairement aux ensembles qui eux ne sont pas
ordonnés.

Proposition, Relation d’égalité
Soit E1, . . . , En n-ensembles.
et X = (x1, . . . , xn), Y = (y1, . . . , yn) deux n− uplets de E1 × . . .× En.
Alors on dit que X = Y si ils possèdent exactement le même nombre déléments que l’on notera
n et si chaque élément à la position i sont égaux.

(x1, . . . , xn) = (y1, . . . , yn) ⇐⇒ ∀i ∈ [1;n] xi = yi

Deux n− uplets sont égaux si et seulement si :

➤ Il possèdent le même nombre d’éléments
➤ Leurs éléments sont dans le même ordre
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DÉFINITION (Partition d’un ensemble)

Soit E un ensemble et I ⊂ N.
Une famille (Fi)i∈I de parties d’éléments de E est appelée partition de E si les trois propositions
suivantes sont vérifiées.

❏ ∀i ∈ I, on a Fi ̸= ∅
Tous les ensembles appartenant à la famille (Fi)i∈I ne doivent pas être vide.

❏
⋃
i∈I

Fi = E

L’union de toutes les parties doit donner E.
❏ ∀(i, j) ∈ I2 tel que i ̸= j avec Fi ∩ Fj = ∅

Toute intersection de deux parties différentes doit donner l’ensemble vide.

Exemple d’application
Soient E = {1, 2, 8, 6, 9, 4, 7} et G = {G1, G2} une famille avec G1 = {1, 8, 6} et G2 = {2, 9, 7}.
On cherche à savoir si G est une partition de E.

➤ Vérifions si toutes parties dans G est non vide.
On a G1 = {1, 8, 6} ≠ ∅ et G2 = {2, 9, 7} ≠ ∅.
Ainsi la première condition est vérifiée.

➤ Calculons l’union de toutes les ensembles de G.
G1 ∪G2 = {1, 2, 6, 7, 8, 9}
Or G1 ∪G2 ̸= E alors, la seconde propriété n’est pas vérifiée
D’où G n’est pas une partition de E.

Remarque

❍ Si (Fi)i∈I est une partition de E. D’après la définition, ∀x ∈ E, il existe un
unique i ∈ I tel que xi ∈ Fi.
Autrement dit, chaque élément de E doit être contenu dans une unique par-
tie Fi.

❍ Parfois, on utilise le terme de partition même si la première condition n’est
pas vérifiée. On parle de partition non-propre.

6.3 ) Les relations binaires

6.3.1 ) Principe de base

DÉFINITION (Relation binaire)

Soient E et F deux ensembles non vide.

❏ Toute partie R de E × F est appelée relation binaire sur E et F .
❏ Soit R une relation sur E et F , (x, y) ∈ E × F .

On dit que x et y sont en relation selon R si et seulement si (x, y) ∈ R.
On notera alors xRy.

❏ Lorsque E = F , on parle de relation binaire sur E .
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Remarque

En pratique, une relation binaire R sur E et F se définit généralement à l’aide
d’un prédicat portant sur E × F précisant les éléments en relation :

∀(x, y) ∈ E × F xRy ⇐⇒ P(x, y)

Dans ce cas l’ensemble R = {(x, y) | P(x, y)}

Rappel de cours

La notation (x, y) ∈ E × F
Lorsque l’on prend (x, y) ∈ E×F en gros ça veut simplement dire que je prend un couple d’élément
où x ∈ E et y ∈ F .

Exemple
La relation ”inférieur ou égal” définie sur R par :

∀(x, y) ∈ R2 xRy ⇐⇒ x− y ≥ 0

est une relation binaire sur R, elle est aussi notée ≤.

6.3.2 ) Représentation à l’aide d’un graphe

DÉFINITION (Graphe)

Une graphe orienté G est un couple (S,A) de deux ensembles où :

❏ S est un ensemble fini et non vide, celui des sommets.
❏ A ⊂ S × S est un ensemble dont les éléments sont appelés arcs.

Un graphe G = (S,A) est souvent représenté graphiquement sur le plan R2 en suivant les règles
suivantes :

➤ Chaque sommet S est représenté à l’aide d’un point sur le plan.
➤ Chaque arc (i, j) de A est représenté à l’aide d’une liaison orientée du point i vers le point j.

Représentation d’une relation avec un graphe
Soit R une relation binaire sur un ensemble E contenant n éléments. Il est possible de représenter
cette relation à l’aide d’un graphe orienté G = (S,A) où :

➤ L’ensemble des sommets du graphe G correspond à l’ensemble E. i.e. S = E

➤ L’ensemble des arcs du graphe G correspond à l’ensemble des relations entre les éléments de
E. i.e.

A = {(i, j) ∈ E2 | iRj}

Exemple

R = {(x, y) | x divise y, x, y ∈ {1, 2, 3, 4}} 1

2

3

4
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6.3.3 ) Représentation matricielle

Soit R une relation binaire sur les ensemble [1;n] et [1;m], avec n,m) ∈ (N∗)2.
Il est possible de représenter cette relation à l’aide d’une matrice M ∈ Mn,m({0, 1}) définie par :

∀(i, j) ∈ [1;n]× [1;m] mij =

{
1 si iRj

0 sinon

Exemple

R = {(1, 1), (1, 2), (2, 3), (2, 2), (3, 4)}
M =


1 1 0 0

0 1 1 0

0 0 0 1



6.3.4 ) Propriétés des relations binaires

Proposition
Soit E un ensemble non vide et R une relation binaire sur E.
La relation R est dite :

➤ RÉFLÉXIVE si tout élément de E est en relation avec lui-même.
On note :

∀x ∈ E xRx

➤ SYMÉTRIQUE si la relation entre chaque paire d’éléments et permutable.
On note :

∀x, y ∈ E xRy ⇐⇒ yRx

➤ ANTISYMÉTRIQUE si lorsque chaque paire d’éléments sont en relations de manière per-
mutable alors ils sont égaux.
On note :

∀x, y ∈ E (xRy ∧ yRx) =⇒ x = y

➤ TRANSITIVE si un premier élément est en relation avec un deuxième, et que ce deuxième
est en relation avec un troisième, alors le premier est aussi en relation avec le troisième.
On note :

∀x, y, z ∈ E (xRy ∧ yRz) =⇒ xRz

DÉFINITION (relation d’équivalence)

Soit E une ensemble non vide et R une relation.
R est une relation d’équivalence si et seulement si cette même relation est :

❏ Réfléxive ❏ Symétrique ❏ Transitive
L’équivalence se note ∼.
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Remarque Si ∀(x, y) ∈ E2 on a x ∼ y alors x est dit équivalent à y.

Sur tout ensemble E, la relation d’égalité est une relation d’équivalence sur E.

Proposition
Soient E et F deux ensembles, et f : E → F une application.
La relation binaire R définie sur E par la propriété suivante est une relation d’équivalence sur E :

∀(x, y) ∈ E2, xRy ⇐⇒ f(x) = f(y)

Démonstration
❏ Réféxivité

Soit x ∈ E
On a f(x), et par définition f(x) est égal à lui même ainsi f(x) = f(x) =⇒ xRx
R est réfléxive.

❏ Symétrie
Soit x, y ∈ E
Alors on a xRy ⇐⇒ f(x) = f(y)
Puisque l’égalité est commutative cela signifie que a = b est équibalent à b = a.
Alors on a :

f(x) = f(y) ⇐⇒ f(y) = f(x)

Ainsi la relation R est symétrique
❏ Transitivité

Soit x, y, z ∈ E alors par définition de la symétrie on a xRy et yRz c’est à dire :

f(x) = f(y) f(y) = f(z)

Puisque f(y) = f(z) dans la seconde affirmation alors on peut remplacer f(y) par f(z)
dans la première affirmation.
Ainsi on obtient :

f(x) = f(y) qui donne f(x) = f(z)

Ainsi R est une relation transitive.
En somme d’après les trois propriétés, R est une relation d’équivalence.

DÉFINITION (classe d’équivalence)

Soit E un ensemble non vide et R une relation d’équivalence sur E.
On appelle classe d’équivalence , l’ensemble des éléments de E partageant la même relation.

C(x) = {y ∈ E | xRy}

Les classes d’équivalences peuvent être notées C(x),
.
x ou encore x.

Remarque Autrement dit, la classe d’équivalence C(x) représente l’ensemble des
éléments y ∈ E qui sont en relation avec x.
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DÉFINITION (ensemble quotient)

L’ ensemble quotient représente l’ensemble de toutes les classes d’équivalences suivant R.
On note :

E\R = {C(x) | x ∈ E}

Remarque
Représentant d’une classes d’équivalence
Soit C ∈ E\R, C est alors une classes d’équivalence.
Chaque élément qui se trouve dans C est appelé représentant de C.

Exemple
Considérons la relation suivante :

∀D1, D2 ∈ D D1RD2 ⇐⇒ D1 ∥ D2

où D représente l’ensemble des droites, et ∥ pour parallèle.
Soit D ∈ D alors la classe d’équivalence de D :

C(D) = {D′ ∈ D | D ∥ D′}

Représente l’ensemble des droites qui sont parallèles à D.

Proposition
Soit E un ensemble non vide et R une relation d’équivalence sur E.
Alors :

∀(x, y) ∈ E2 xRy ⇐⇒ C(x) = C(y)

Remarque Deux éléments sont en relation si et seulement si leurs classes d’équivalence
sont égales.

Proposition
Soient E un ensemble non vide et R une relation d’équivalence sur E.
Alors :

➤ ∀x ∈ E, on a C(x) ̸= ∅
➤

⋃
x∈E

C(x) = E

➤ ∀(x, y) ∈ E2 si C(x) ̸= C(y) alors C(x) ∩ C(y) = ∅
Cette proposition ne vous fait pas penser à quelque chose?
Évidemment que si, la définition d’une partition !

On montrera cette proposition en séance commune, juste pour vous prouver que tout est
démontrable.

Remarque
La troisième condition signifie que si deux classes d’équivalences sont
différentes alors elles sont disjointe. A l’inverse si elles partagent au moins
un élément commun, alors elles sont égales.
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Proposition
Soit E un ensemble non vide.

➤ Soit R une relation d’équivalence sur E.
Alors l’ensemble E\R des classes d’équivalences suivant R est une partition de E.

➤ Soit I ⊂ N et (Pi)i∈I une partition de E. Alors la relation R sur E définie par :

∀x, y ∈ E, xRy ⇐⇒ ∃i ∈ I, x ∈ Pi et

y ∈ Pi

est une relation d’équivalence sur E.

6.4 ) Relation d’ordre

DÉFINITION (relation d’ordre)

Soit E une ensemble non vide et R une relation.
R est une relation d’ordre si et seulement si cette même relation est :

❏ Réfléxive ❏ Antisymétrique ❏ Transitive

Une relation d’ordre est le plus souvent noté ≤ ou <.

DÉFINITION (ordre total)

Soit (E,R) un ensemble ordonné.

❏ Deux éléments x et y sont dit comparables si xRy ou yRx.

❏ Si tous les éléments de l’ensemble ordonné sont comparables, la relation est dite
d’ordre total sur E.
On dira alors que (E,R) est un ensemble totalement ordonné.

DÉFINITION (Prédécesseur et successeur)

Considérons (E,≤) un ensemble ordonné.
x, y deux éléments de E tels que :

❏ x ≤ y

❏ x ̸= y

❏ ∄z ∈ E
(z ̸= x, z ̸= y) ∧ (x ≤ z ≤ y)

Alors x est appelé prédécesseur de y. Et y est appelé successeur de x.

6.4.1 ) Diagramme de Hasse
Tout ensemble ordonné et fini (E,≤) peut être représenter dans le plan à partir d’un diagramme de
Hasse selon la règle suivante :

➤ Chaque point du diagramme correspond à un élément de E dont la position suit la convention
suivante :
Si x est plus petit que l’élément y au sens de la relation ≤ alors x sera placé en dessous de y.
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➤ Deux points correspondants à deux éléments x et y sont reliés par un segment dans le diagramme
si x est un prédécesseur de y.

Remarque Si un ensemble est totalement ordonné alors son diagramme de Hasse sera
une chaı̂ne.

6.4.2 ) Ordre inverse

DÉFINITION (Ordre inverse)

Soit R une relation d’ordre sur un ensemble E non vide.
Alors, la relation R−1 définie sur E par

∀(x, y) ∈ E2, xR−1y ⇔ yRx

est une relation d’ordre sur E appelée ordre inverse de R sur E.
Si R est d’ordre total sur E alors R−1 l’est aussi.

6.4.3 ) Ordre produit

DÉFINITION (Ordre produit)

Soit (E,R) et (F,S) deux ensembles ordonnés.
La relation P définie sur E × F par :

∀(a, b), (c, d) ∈ E × F, (a, b)P(c, d) ⇐⇒ (aRc ∧ bSd)

est une relation d’odre sur E × F , appelée ordre produit sur E × F .

Proposition
Soit (E,R) et (F,S) deux ensembles ordonnés.
La relation L définie sur E × F par :

∀(a, b), (c, d) ∈ E × F, (a, b)L(c, d) ⇐⇒ (a ̸= c ∧ bRc) ∨ (a = c ∧ bSd)

est une relation d’ordre sur E × F .
Appelée ordre lexicographique sur E × F .

Remarque Si R et S sont d’ordre totaux sur E et F alors L est un ordre total sur E × F .

6.4.4 ) Majoration et minoration

DÉFINITION (majorant, minorant)

Soit (E,R) un ensemble ordonné et A ⊂ E (une partie de E).
Soit m ∈ E.

❏ m est un majorant de A dans E si ∀x ∈ A, xRm

❏ m est un minorant de A dans E si ∀x ∈ A, mRx
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Remarque

❍ La partie A de E est dite majorée si elle admet au moins un majorant dans
E.

❍ La partie A de E est dite minorée si elle admet au moins un minorant dans
E.

❍ A est bornée si elle est à la fois minorée et majorée.
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