
Fiches de coursProgrammation JavaScript
Apprendre à programmer en JS

Killian Reine

Table des matières

1 Les variables 3
1.1 Généralités sur les variables . 3
1.2 Types courrant de variable . 3
1.3 Oppérations sur les variables . 4

1.3.1 Oppérations arithmétique . 4
1.3.2 Incrémentation et décrémentation . 4
1.3.3 Opération de comparaison . 5
1.3.4 Opérations logique . 5

1.4 Concaténation des chaînes de caractères . 6
1.5 Conversion de variable . 6
1.6 Types plus complexes . 6

1.6.1 Les objets . 6
1.6.2 Les tableaux . 7

1.7 Les types spéciaux . 8

2 Copie par valeur, copie par référence 8
2.1 Copie par référence . 8
2.2 Copie par valeur . 8

3 Les conditions 9
3.1 Le switch / case . 9
3.2 Le ternaire . 9

4 Portée des variables 10

5 Les boucles 10
5.1 La boucle while . 10
5.2 La boucle for . 11

5.2.1 Boucle for...in . 11
5.2.2 Boucle for...of . 11

6 Les fonctions 11
6.1 Portées des variables . 12

6.1.1 Hosting de variable . 12
6.1.2 Hosting de fonction . 12

6.2 L’opérateur this . 13
6.3 Les fonctions fléchées . 13
6.4 Fonctions usuelles . 14

7 Les classes 14
7.1 Introduction aux prototypes . 14
7.2 Création d’objets et de prototypes . 15

7.2.1 Fonction de constructeur . 15
7.2.2 Constructeur de class . 15
7.2.3 Les getters et les setters . 16

7.3 Propriété publique, propriété privée . 17
7.4 Introduction à l’héritage de class . 18

7.4.1 Exemple avec les fonctions de constructeur . 18
7.4.2 Exemple avec les class . 18

8 Gestion des erreurs 18
8.1 Vérification des types . 19
8.2 Vérification spécifique des objets . 20

1

9 Objets et types avancés 20
9.1 Objet Date . 20
9.2 Les expressions régulières . 21

9.2.1 Création d’une expression régulière . 21
9.2.2 Recherche de motif dans une chaine de caractère . 21
9.2.3 Renvoyer toute les correspondances . 21
9.2.4 Renvoyer l’indice de correspondance . 22
9.2.5 Remplacement de motif . 22

9.3 La valeur NaN . 22

10 Méthodes associées aux objets de type string 23

11 Les timers 25
11.1 setTimeout . 25
11.2 setInterval . 25

12 Code asynchrone 26

13 Les promesses, Promise 27
13.1 Chainage des promesses . 29
13.2 Composition de promesses . 30

14 La syntaxe async ... await 30

15 La méthode fetch() 31

16 Les modules 32

2

Le langage JavaScript 2024-2025

1 Les variables
1.1 Généralités sur les variables

Une variable permet de stocker une donnée.
Une donnée est une information, que l’on range dans une variable. Elle possède un nom qui permet de
l’identifier et un type, qui indique la nature de l’élément stocké (lettre, nombre, . . .).

Définition

Déclarer une variable

En JavaScript, il est possible de déclarer des variables de plusieurs manières différentes.

• Variable statique

const nomVariable = valeur ;

Une variable déclarée avec le mot clé const est non-mutable, c’est à dire qu’elle ne peut pas changer
de valeur.

• Variable dynamique

let nomVariable = valeur ;

Une variable déclarée avec le mot clé let est mutable, on peut donc la changer.

Si vous souhaitez afficher des résultats dans la console, il suffirat d’utiliser :

console.log(nomVariable) ;

1.2 Types courrant de variable

En JavaScript, il existe plusieurs types de variable. Les plus courrants sont :

• Les nombres Number

• Les caractères et les chaines de caractères String

• Les booléens, vrai ou faux Boolean

Exemple 1.1
let prenom = "killian";
let age = 18;
const sexe = "masculin";
let majeur = true;

Complément sur le type String

Les chaîne de caractères peuvent être données entre simple guillemet, double guillements, ou même entre
backtick que l’on utilise en MarkDown et sur discord.

Remarque

Ajouter une apostrophe

let chaine = ’Une chaine d\’aujourd’hui’;

Première partie Page 3 Killian Reine

Le langage JavaScript 2024-2025

Ajouter une variable

let chaine = ’prenom : ${variable}’;

Une chaine sur plusieurs lignes

let paragraphe = ‘je suis
sur
plusieurs lignes‘;

1.3 Oppérations sur les variables

1.3.1 Oppérations arithmétique

Exemple 1.2
let a = 5;
let b = 6;
let sum = a + b; //Addition
console.log(sum);

11

let diff = a - b; //Différence
console.log(diff);

-1

let prod = a * b; //Produit
console.log(prod);

30

let div = a/b; //Division, quotient
console.log(div);

0.83333333333

let mod = a % b; //Modulo
console.log(mod);

5

Les oppérations d’assignations peuvent aussi être utilisées : +=, -=, *=, /= %=
Remarque

1.3.2 Incrémentation et décrémentation

Exemple 1.3
let a = 0;
let b = 3;
a++;
b--;
console.log(a, b);

1 2

Première partie Page 4 Killian Reine

Le langage JavaScript 2024-2025

1.3.3 Opération de comparaison

Les opérations de comparaison valides.

• Inférieur strict <, Inférieur ou égal <=

• Supérieur strict >, Supérieur ou égal >=

• Égalité ==, égalité stricte ===

• Différence !=, différence stricte !==

Comparaison d’égalité

Exemple 1.4
let a = 12;
let b = "12";
let c = 12;
console.log(a==b, a===b, a===c);

true false true

Comparaison de différence

Exemple 1.5
let a = 12;
let b = "12";
let c = 12;
console.log(a=!b, a==!b, a==!c);

false true false

La comparaison stricte tient compte du type des variables mises en jeu

Zoom

La syntaxe //... pour insérer des commentaires.
Remarque

1.3.4 Opérations logique

Exemple 1.6
ET logique
let a = true;
let b = true;
console.log(a && b); //renvoie true

OU logique
console.log(a || b); //renvoie true

NON logique
console.log(!a); //renvoie false

Si besoin, petit rappel sur les tables de vérités du ET, OU et NON logique.

Première partie Page 5 Killian Reine

Le langage JavaScript 2024-2025

1.4 Concaténation des chaînes de caractères

Exemple 1.7
let chaine = "Bonjour";
let chaine2 = "le monde";
let nombre = 47;
console.log(chaine+=chaine2);

Bonjourle monde

console.log(chaine+nombre);

Bonjour47

et oui, en JavaScript on peut ajouter des chaines e de caractères et des nombres ensembles.

1.5 Conversion de variable

Conversion en entier

Pour convertir une chaine de caractère en nombre :

let nombre = Number(chaine);

Exemple 1.8
let c1 = "2" ;
let nb = 4;
console.log(Number(c1);

2

console.log(nb+c1, nb+Number(c1));

"42", 6

1.6 Types plus complexes

Les types suivants seront étudiés en détail plus tard dans le cours.

1.6.1 Les objets

Un objet permet de stocker diverses informations de différents types dans un même endroit.

Définition

Stucture générale d’un objet

const nomObjet = {
elem1 : val1,
elem2 : val2,...
elemn : valn

};

Première partie Page 6 Killian Reine

Le langage JavaScript 2024-2025

Exemple 1.9
On vas créer un objet élève et on vas stocker ses informations personnelles ainsi que ses notes.
const eleve = {

nom : "Reine",
prenom : "Killian",
sexe : "M",
dateNaissance : "16/09/2005",
age : 18,
notes : [12, 15, 7, 20]

};
console.log(eleve.nom, eleve[’nom’]);

"Reine", "Reine"

console.log(eleve.notes[3], eleve[’notes’][1]);

20 15

Les objets peuvent contenir eux aussi des objets.
Remarque

1.6.2 Les tableaux

Les tableaux permettent de stocker une liste d’information. Cette liste peut contenir n’importe quel autre type
de variable (un tableau peut même contenir un autre tableau).

Définition

Structure générale d’un tableau

monTableau = [elt1, elt2, ..., eltn];

Méthodes associées aux tableaux

• accéder à l’élément n

monTableau[n];

• ajouter un élément à la fin du tableau

monTableau.push(nvValeur);

• Supprimer le dernier élément

monTableau.pop();

• afficher la taille du tableau

monTableau.length;

Une liste peut elle même contenir une liste, c’est ce qu’on appelle tableau à n-dimentions.
Remarque

Première partie Page 7 Killian Reine

Le langage JavaScript 2024-2025

1.7 Les types spéciaux

• undefined est le type qui apparaîtra lorsque vous essayer d’accéder à une valeur inexistante.
Par exemple quand vous souhaitez accéder à un élément d’un tableau mais que vous êtes sorti de ce dernier.

• null absence de valeur.

• NaN Not a Number.

2 Copie par valeur, copie par référence

2.1 Copie par référence

Lorsque l’on copie une variable par référence, dans notre cas, la variable copieListeInitiale pointe vers la même
liste que listeInitiale c’est la raison pour laquelle lorsque listeInitiale est modifiée alors copieListeInitiale
l’est aussi.

Exemple 2.1
let listeInitiale = [1, 2, 3];
let copieListeInitiale = listeInitiale;
//Affichage des listes avant modification
console.log(listeInitiale, copieListeInitiale);

[1, 2, 3] [1, 2, 3]

//Modification de la liste initiale
listeInitiale.push(4);
//Affichage des listes après modification
console.log(listeInitiale, copieListeInitiale);

[1, 2, 3, 4] [1, 2, 3, 4]

2.2 Copie par valeur

Lors de la création de la variable copieListeInitiale, on utilise la fonction list() qui vas en fait créer une
nouvelle liste contenant la même chose que liste Initiale.

Exemple 2.2
let listeInitiale = [1, 2, 3];
let copieListeInitiale = Array.from(listeInitiale);
//Affichage des listes avant modification
console.log(listeInitiale, copieListeInitiale);

[1, 2, 3] [1, 2, 3]

//Modification de la liste initiale
listeInitiale.push(4);
//Affichage des listes après modification
console.log(listeInitiale, copieListeInitiale);

[1, 2, 3, 4] [1, 2, 3]

Première partie Page 8 Killian Reine

Le langage JavaScript 2024-2025

3 Les conditions

Structure de la condition if

if (condition <1>) {
instructions si <1> vrai;

} else if (condition <2>) {
instructions si <2> vrai;

} else {
instruction si <1> et <2> sont faux;

}

• On a vu les différents opérateurs de comparaison

• Attention, lorsque l’on compare des objets, même si ces derniers ont les mêmes propriétés, il ne sont pas considérés comme égaux.

Exemple 3.1
{ a : 1 } == { a : 1 }; //false
{ } == { }; //false
== []; //false
NaN == NaN; //false

Remarque

Saisie utilisateur

Pour permettre à l’utilisateur de saisir des informations dans une boite de dialogue :

let saisie = prompt("Tapez quelque-chose : ");

3.1 Le switch / case

Structure de la switch/case

switch (valeurATester) {
case proposition<1> :

instruction si valeurATester == proposition<1>;
case proposition<2> :

instruction si valeurATester == proposition<2>;
break

case proposition<n> :
instruction si valeurATester == proposition<n>;

default :
instruction à effectuer par défault;

}

Au lieu de faire n conditions if et else if, vous pouvez utiliser cette structure qui permet aussi de gérer les excep-
tions (= erreurs).

3.2 Le ternaire

Le ternaire est un opérateur conditionnel qui permet de réduire une condition du type if else en une seule
ligne.

Définition

Structure du ternaire

let ternaire = (condition ? <valeur si vrai> : <valeur si faux>);

Première partie Page 9 Killian Reine

Le langage JavaScript 2024-2025

Exemple 3.2
//Déterminer si je suis majeur ou mineur
const age = 18;
const statut = (age >=18) ? "majeur" : "mineur";
console.log(statut);

"majeur"

4 Portée des variables

▶ Une variable globale peut être utilisé partout dans notre code, elle est souvent déclarée au début du code.

▶ Une variable locale peut être utilisé dans un bloc de code bien précis, les paramètres d’une fonction sont
des variables locales utilisables uniquement à l’intérieur de celle-ci.

Définition

On peut avoir deux variables qui comporte le même nom mais une portée différente.

Exemple 4.1
let variable = 2; //Variable GLOBALE
if (true) {

let variable = 5; //Variable LOCALE
console.log("variable dans le if : ", variable);

}
console.log("variable hors du if : ", variable);

variable dans le if : 5
variable hors du if : 2

Remarque

5 Les boucles

5.1 La boucle while

La boucle while permet d’exécuter un même code en boucle tant qu’une condition est vraie.
Attention, à bien faire attention à la condition d’arrêt (qui devra forcément devenir faux) de votre boucle while au
risque de faire une boucle infinie...

Structure de la boucle while

while (condition) {
instructions tant que condition est vraie;

}
On peut aussi mettre la condition en fin de boucle avec do...while
do {

Instructions tant que condition est vraie;
} while (condition)

forcer la sortie d’une boucle

break;

Première partie Page 10 Killian Reine

Le langage JavaScript 2024-2025

5.2 La boucle for

La boucle for permet d’exécuter un code un certain nombre de fois en précisant manuellement l’intervalle pour
lequel on souhaite faire la boucle.

Structure de la boucle for

for (let variable = valInitiale ; condition ; incrementer variable) {
// Instructions

}

5.2.1 Boucle for...in

La boucle for...in permet d’itérer sur les éléments énumérables. Elle permettra de récupérer les clefs d’un tableau
ou les propriétés d’un objet

Structure du for...in

for (const var in objet) {
// instructions

}

5.2.2 Boucle for...of

La boucle for...of permet de boucler sur un objet itérable en renvoyant les valeurs à chaque itération.

Structure du for...of

for (const var of objet) {
// instruction à itérer sur chaque éléments de objet

}

6 Les fonctions

Les fonctions permettent de stocker en mémoire une certaine logique que l’on pourra utiliser à plusieurs
reprises dans la suite de notre code. Elles prennent en général des paramètres et retournent un résultat
particulier.

Définition

Strucure d’une fonction

function nomFonction (parametres) {
return;

}
//Pour appeler la fonction
nomFonction(parametres);

Les fonctions en JavaScript sont un type de variable particulier, il est donc aussi possible de ne pas leur donner
de nom, mais de les stocker dans une variable de manière classique.
const nomFonction = function (parametres) {

return;
};

Remarque

Première partie Page 11 Killian Reine

Le langage JavaScript 2024-2025

6.1 Portées des variables

Une fonction déclarée dans une variable aura la même portée que les variables (limité au bloc courant). Par contre
une fonction déclarée directement avec le mot clef function aura une portée plus globale.
Aussi, l’hoisting fera qu’une fonction peut être appelée avant d’être déclarée.

Le terme "hosting" en JavaScript fait référence à la manière dont les variables sont stockées et accessibles
dans différents environnements, tels que les fonctions ou les blocs de code. En termes simples, c’est l’endroit
où une variable est déclarée et où elle peut être utilisée dans votre code.
En JavaScript, il existe deux types de hosting :

• hosting de variable

• hosting de fonction

Définition

6.1.1 Hosting de variable

Lorsque vous déclarez une variable avec var, let, ou const, elle est "hébergée" au début de la portée dans laquelle
elle est déclarée, mais elle reste "indéfinie" jusqu’à ce que l’exécution du code atteigne la ligne où elle est déclarée.

Exemple 6.1
console.log(x); // Renvoie undefined
var x = 10;
console.log(x); // Renvoie 10

En réalité, le code ci-dessus est interprété comme suit par le moteur JavaScript :
var x;
console.log(x); // Renvoie undefined
x = 10;
console.log(x); // Renvoie 10

6.1.2 Hosting de fonction

Les fonctions sont également "hébergées" au début de leur portée, ce qui signifie que vous pouvez appeler une
fonction avant sa déclaration dans le code.

Exemple 6.2
sayHello(); // Renvoie "Bonjour!"
function sayHello() {

console.log("Bonjour!");
};

Revient à coder :
function sayHello() {

console.log("Bonjour!");
}
sayHello(); // Renvoie "Bonjour!"

Première partie Page 12 Killian Reine

Le langage JavaScript 2024-2025

6.2 L’opérateur this

Exemple 6.3
function nomFonction () {

console.log(this);
}
nomFonction.call(4);

4

Dans notre cas, this prendra la valeur du paramètre de la fonction.

Exemple 6.4
const variable = {

prop : 42,
maFonction : function(){

return this.prop;
},

};
console.log(a.maFonction());

42

6.3 Les fonctions fléchées

Les fonctions fléchées sont une syntaxe alternative (plus courte) pour les fonctions.
Ces fonctions ont comme particularité de ne pas posséder de valeur this.

Exemple 6.5
const maVariable = (parametre) => {

return parametre+4;
}
maVariable(2);

6

si il n’y a qu’une instruction de retour, on pourra simplifier l’appel en retirant les accolades. On pourra aussi
retirer les parenthèses si il n’y a qu’un paramètre.

Remarque

Exemple 6.6
const double = (n) => {

return 2 * n;
}
// On peut simplifier en retournant directement en retirant les accolades
const double = (n) => 2 * n;
// Et on peut retirer les parenthèses
const double = n => 2 * n;

Première partie Page 13 Killian Reine

Le langage JavaScript 2024-2025

6.4 Fonctions usuelles

Et oui, certaines méthodes / fonctions sont à connaîtres car très souvent utilisées. Certaines ressemblent à ceux déjà
vues en python par exemple.

Trancher une chaine de caractère

maChaine.split(separateur);

Inverser les éléments dans une liste

maListe.reverse();

Refusionner les éléments d’une liste

maChaine.join(fusionneur);

Mettre le texte en majuscule

maChaine.toUpperCase();

Mettre le texte en minuscule

maChaine.toLowerCase();

Remplacer tout les même mots

maChaine.replaceAll(mot, remplace);

Exemple 6.7
const chainePrincipale = "Bienvenue à vous";
const chaineReverse = chainePrincipale.reverse();
console.log("chaineReverse :", chaineReverse);
const chaineListe = chainePrincipale.split(" ");
console.log("chaineListe :", chaineListe);
const chaineMaj = chainePrincipale.toUpperCase();
console.log("chaineMaj :", chaineMaj);
const chaineMin = chainePrincipale.toLowerCase();
console.log("chaineMin :", chaineMin);
const chaineU = chainePrincipale.replaceAll("u", "OUU");
console.log("chaineU :", chaineU);

chaine reverse : erreur
chaineListe : ["B", "i", "e", "n", "v", "e", "n", "u", "e", " ", "à", " ", "v", "o",
"u", "s"]
chaineMaj : "BIENVENUE A VOUS"
chaineMin : "bienvenue à vous"
chaineU : "BienvenOUUe à voOUUs"

Pour inverser une chaine de caractère, il ne suffit pas de taper chaine.reverse(). Ceci, vous renverra une
erreur (voir exemple du dessus).
Pour inverser une liste :

• Convertir la chaine principale en liste avec split()

• Inverser la liste avec reverse()

• Ré-assembler la liste pour obtenir la chaine résultante inversée avec join()

Remarque

7 Les classes

7.1 Introduction aux prototypes

Pour rappel, JavaScript est un langage de programmation orienté objet, mais il se distingue des autres langages car
il utilise un système de prototype au lieu de classes.

Première partie Page 14 Killian Reine

Le langage JavaScript 2024-2025

En JavaScript, chaque objet possède un lien vers un autre objet appelé prototype. D’ailleur, un prototype
peut lui-même avoir un prototype et ainsi de suite, ce qui forme donc une chaine de prototypes. Ce mécanisme
est utilisé pour l’héritage.

Définition

Accéder au prototype d’un objet

Soit objet un objet créé et initialisé au préalable, afin d’accéder à son prototype, on utilisera l’instruction
suivante :

Object.getPrototypeOf(objet)

Nous pouvons bien sûr récupérer le prototype d’une fonction, d’une classe avec cette instruction.

Les codes déclarés (créés) avec class et function renvoient une fonction [[Prototype]]. Avec les prototypes,
chaque fonction peut devenir une instance de constructeur en utilisant new.

Rappelons qu’une instance désigne en fait une copie de la fonction/class qui possède ces propres valeurs et
qui permet d’accéder aux méthodes associées à la class principale.

Remarque

7.2 Création d’objets et de prototypes

7.2.1 Fonction de constructeur

Les fonctions constructeurs permettent de créer des instances qui possèdent les mêmes propriétés.

Exercice 7.1
function Personne (prenom, age) {

this.prenom = prenom;
this.age = age;

}
Personne.prototype.bonjour = function() {

return ’Bonjour, je m’appelle ${this.prenom} et j’ai ${this.age} ans.’;
}

// Création d’une instance de classe
const alice = new Personne("Alice", 50);
console.log(alice.bonjour());

Bonjour, je m’appelle Alice et j’ai 50 ans.

7.2.2 Constructeur de class

Exemple 7.2, renvoi la même chose que l’exemple 7.1
class Personne {

constructor(prenom, age) {
this.prenom = prenom;
this.age = age;

}
bonjour {

return ’Bonjour, je m’appelle ${this.prenom} et j’ai ${this.age} ans.’;
}

}
const alice = new Personne("Alice", 50);
console.log(alice.bonjour());

Première partie Page 15 Killian Reine

Le langage JavaScript 2024-2025

Grâce aux exemples 7.1 et 7.2, nous venons de voir comment assigner des méthodes à une fonction de
constructeur et à une class.

Remarque

Fonction constructeur avec assignation d’une méthode

// Fonction de constructeur
function fonctionConstructeur(parametres){

// Code permettant l’initialisation du constructeur
}

// Assignation d’une méthode
fonctionConstructeur.prototype.nomMethode = function(parametres) {

// Code de la méthode associée à la fonction de constructeur
}

Class avec un constructeur et une méthode

class nomClass {
constructor(parametres) {

// Code permettant l’initialisation du constructeur
}

}
nomMethode = function(parametres) {

// Code de la méthode
}

}

Le constructeur permet en fait d’initialiser les propriétés, attributs d’un objet. Cela garantit que l’objet en question
est exécuté au départ de manière cohérente et sans erreurs.
Un peu plus tard, nous observerons le rôle des constructeurs dans l’héritage.

Remarque

7.2.3 Les getters et les setters

▶ Les getters sont des mini-méthodes qui permettent d’accéder au contenu des propriétés d’un objet

▶ Les setters eux, permettent de modifier la valeur des propriétés d’un objet.
Cela garantit alors la protection des données internes d’un objet en contrôlant comment on peut y accéder et
les modifier.

Définition

Structure d’un getter et d’un setter

class Personne {
// Constructeur de ma class
constructor(prenom, age) {

this._prenom = prenom;
this._age = age;

}
get variable(){

return this._variable
}
set variable(nouv){

this._prenom = nouv; return this._variable
}

}

Première partie Page 16 Killian Reine

Le langage JavaScript 2024-2025

Les getters et setters ne peuvent pas avoir le même nom qu’une propriété.
Comme vous l’avez sûrement remarqué, juste après les this de notre constructeur nous utilisons la forme
propriété. L’underscore "" est une convention en JavaScript qui permet d’indiquer que les propriétés /
variables de la class ne sont utilisable qu’en interne.
Pour faire court qu’elles ne devraient pas êtres accessible ou modifiable directement hors de la class.

Remarque

7.3 Propriété publique, propriété privée

On vient donc d’évoquer l’underscore (_) qui permet seulement de spécifier que l’utilisation des propriétés de la
classe ne peut s’en faire qu’en interne.
Malheureusement, comme écrit cette convention ne fais que spécifier (= indiquer) que l’utilisation doit se faire ainsi,
au final ça ne change rien sur l’utilisation des propriétés puisqu’elles sont quand même modifiable hors de la class.
Cependant, ES6 introduit les champs privé grâce au préfixe #.

ES6, plus connu sous le nom de ECMAScript 2015 est la sixième édition du langage ECMAScript qui constitue
une mise à jour majeure de JavaScript.
Publiée en juin 2015 par ECMA International, cette version introduit de nombreuses fonctionnalités et amélio-
ration du langage permettant ainsi le développement de logiciel plus complexe et maintenable.

ES6

Exemple 7.3
class Personne {

constructor(prenom, age){
this.#prenom = prenom;
this.#age = age;

}
get prenom(){

return this.#prenom;
}
set prenom(nouveauPrenom){

this.prenom = nouveauPrenom;
}

}
const alice = new Personne("Alice", 50);
console.log(alice.#prenom);

erreur
// on ne peut plus accéder directement aux propriétés, il faut passer par les getters et setters

// Cette fois, on accède à la propriété prénom, en utilisant un getters
console.log(alice.prenom);

Alice

alice.prenom = bob;
console.log(alice.prenom);

erreur
// Vous essayez de modifier la valeur de prenom sans passer par un setters

Première partie Page 17 Killian Reine

Le langage JavaScript 2024-2025

7.4 Introduction à l’héritage de class

L’héritage permet dans les langages orienté objet la réutilisation du code, en créant de nouvelles class basées sur
celles déjà existantes en réutilisant les propriétés, méthode de cette dernière.
La class sur laquelle la nouvelle s’appuie sera appelée class parente.

7.4.1 Exemple avec les fonctions de constructeur

Exemple 7.4
Nous allons reprendre notre fonction de constructeur (exemple 7.1) Personnage et nous allons créer une
nouvelle sous-fonction que nous nomerons superHeros avec un nouvel attribut qui sera le pouvoir.

function superHeros(prenom, age, pouvoir) {
Personnage.call(this, prenom, age);
this.pouvoir = pouvoir;

}

7.4.2 Exemple avec les class

Les class, introduites pas ES6 utilisent le mot clé super au lieu de call pour accéder aux fonctions parents. Pour
renvoyer à la class parents, on utilise extends.

Exemple 7.5
Même principe que l’exemple précédant, sauf que là, on prend la class Personnage.

class superHeros extends Personne {
constructor (prenom, age, pouvoir) {

super(prenom, age);
this.pouvoir = pouvoir;

}
}

8 Gestion des erreurs

Jusqu’à lors, nous n’avons pas pris compté des erreurs qu’il peut exister dans notre code. Puisque lorsque l’on code
des fonctions, elles ont souvent des paramètres d’un type voulu. Mais vous avez sûrement remarqué que aucun
système ne vérifie la validité des paramètres donnés.

Exemple 8.1
Un professeur d’informatique vient de coder une fonction qui calcul la moyenne de ses élèves.
function moyenne(notes) {

nbNote = notes.length;
sommeNote = 0;
for(i = 0; i<notes.length; i++) {

sommeNote += notes[i];
}
return ’Ta moyenne est de ${sommeNote/nbNote} /20’;

}
console.log(moyenne[15, 20, 5, 0]);
console.log(moyenne(25, 12, 14));

Ta moyenne est de 10/20
Ta moyenne est de NaN/20

Première partie Page 18 Killian Reine

Le langage JavaScript 2024-2025

Comme vous le voyez, la fonction codée necessite d’entrer un tableau de note en paramètre. Malgré tout,
lorsque l’on entre des nombres à l’aveugle, la fonction s’exécute quand même, malgré que le résultat
obtenu ne soit pas celui attendu.
L’objectif ici est donc que la fonction retourne une erreur lorsque l’entrée notes n’est pas un tableau.
Nous allons donc rajouter un test.
Exemple 8.1
function moyenne(notes) {

if (!Array.isArray(notes)) {
throw new Error(’Les notes doivent être contenues dans un tableau’);

}
nbNote = notes.length;
sommeNote = 0;
for(i = 0; i<notes.length; i++) {

sommeNote += notes[i];
}
return ’Ta moyenne est de ${sommeNote/nbNote} /20’;

}
console.log(moyenne[15, 20, 5, 0]);
console.log(moyenne(25, 12, 14));

Ta moyenne est de 10/20
ERROR

Jusqu’ici, nous avons réussi à faire planter notre programme si les notes ne sont pas un tableau. Mais moi je
veux que loe code affiche le message d’erreur souhaité.
On utilise alors try ...catch
On reprend notre code, en ajoutant les modifications.
try {

console.log(moyenne[15, 20, 5, 0]);
console.log(moyenne(25, 12, 14));

}
catch (e) {

console.error(e.message); // Afficher le message d’erreur
}

Ta moyenne est de 10/20
Les notes doivent êtres contenues dans un tableau.

8.1 Vérification des types

Opérateur typeof

Il est possible d’afficher le type d’une valeur (variable) en utilisant la forme suivante :

console.log(typeof variable);

Exemple 8.2
La fonction suivante renvoie true si le paramètre donné est de type number, false sinon.
function verifNombre(nb){

type = typeof nombre;
return type=="number";

}

Première partie Page 19 Killian Reine

Le langage JavaScript 2024-2025

8.2 Vérification spécifique des objets

Objet de type array

Dans l’exemple global, nous avons vu comment vérifié si une variable est un objet de type array (= tableau).

Array.isArray(variable)

Objet de type Date

L’instruction suivante permet de vérifier si variable est bien une instance d’objet Date.

variable instanceof Date

La forme instanceof fonctionne aussi pour vérifier si une variable est une instance de :

• RegExp, une expression régulière

• Error, une erreur

Les informations relatives à ces nouveaux objets encore inconnus seront explicitées dans la partie suivante.

Remarque

Vérification NaN, Not-a-number

Number.isNaN(variable)

9 Objets et types avancés

9.1 Objet Date

En JavaScript, Date est un objet utilisé pour manipuler les dates et les heures. Ce dernier est associé à de
nombreuses méthodes permettant de formater, créer, comparer et calculer des dates et des heures.

Définition

Méthode associées à l’objet Date

▶ Récuperer la date actuelle

let variable = new Date();

▶ Récupérer une date spécifique

let dateSpecifique = new Date(’annee-mois-jour’) ;

▶ Utiliser les arguments séparés

let dateSpecifique = new Date(annee, mois, jour) ;

▶ Timestamp, milliseconde depuis le 1er janvier 1970, UTC

let dateSpecifique = new Date(nbMillisecondes) ;

Première partie Page 20 Killian Reine

Le langage JavaScript 2024-2025

Il est aussi possible de récupérer l’année uniquement, ou autre grâce aux méthodes suivantes :

• date.getFullYear();
• date.getMonth();
• date.getDate();

• date.getDay();
• date.getHours();
• date.getMinutes();

• date.getSeconds();

• date.getMilliseconds();

Attention, lorsque vous voulez vous même définir la date, vous remplacer get par set mais prennez garde,
les mois sont numérotés comme suit 0 pour janvier et 11 pour décembre !

Remarque

9.2 Les expressions régulières

Les expressions régulières (regex) sont des motifs, utilisés pour trouver ou manipuler du texte dans des
chaînes de caractères.
Elles permettent ainsi de rechercher des mots, caractères, motifs spécifiques, remplacer, extraires,

Définition

9.2.1 Création d’une expression régulière

Instructions
• Avec une expression

let regex = /motif/;
• En créant un objet

let regex = new RegExp(’motif’);

9.2.2 Recherche de motif dans une chaine de caractère

Exemple 9.1
let regex = /abc/;
console.log(regex.test("abcdef"));
console.log(regex.test("defg"));

true
false

9.2.3 Renvoyer toute les correspondances

Exemple 9.2
let regex = /(a)(bc)/;
let chaineTest = "cdefabc";
let result = regex.exec(chaineTest);
console.log(result);

[’abc’, ’a’, ’bc’, index : 4, input : ’cdefabc’, groups : undefined]

let regex2 = /(abc)d/;
let result2 = regex2.exec(chaineTest);
console.log(result2);

null

Première partie Page 21 Killian Reine

Le langage JavaScript 2024-2025

9.2.4 Renvoyer l’indice de correspondance

Exemple 9.3
let regex = /(a)(bc)/;
let chaineTest = "cdefabc";
let result = chaineTest.search(regex);
console.log(result);

4

let regex2 = /(abc)d/;
let result2 = chaineTest.search(regex2);
console.log(result2);

-1

9.2.5 Remplacement de motif

Exemple 9.4
let str = ’abcdef’;
let nouvStr = str.replace(/abc/, ’xyz’);
console.log(nouvStr);

xyzdef

Il existe aussi les classes de caractères

▶ /[abc]/
a, b ou c

▶ /[^abc]/
tout les caractères sauf a, b ou c

Remarque

Les expressions régulières peuvent être utilisées lors de la validation d’un email, pour vérifier si le format est bien
respecté.

let emailRegex = /ˆ[ˆ\s@] + @[ˆ\s@] + \.[ˆ\s@]+$/;
console.log(emailRegex.test(’example@example.com’));
console.log(emailRegex.test(’invalid-email’));

true
false

Validité d’un email

9.3 La valeur NaN

NaN (Not a Number) est une valeur spéciale qui indique qu’une opération a échouée ou alors qu’une valeur
n’est pas un nombre valide.

Définition

Première partie Page 22 Killian Reine

Le langage JavaScript 2024-2025

Imaginons que votre code convertisse une chaine de caractère en nombre grâce à la fonction number :

let nb = Number("du texte");

La valeur retournée sera donc NaN puisque convertir une chaine de caractère n’est pas possible, l’opération a
donc échouée d’où le NaN.
Opération valide

let nb = Number("1560")

Remarque

10 Méthodes associées aux objets de type string

La méthode charAt()

Lorsque l’on souhaite récupérer un caractère à un indice spécifique dans une chaine, on utilise la méthode
charAt() :

chaineCaract.charAt(indice)

Imaginons la chaine "chat", le mot est composé de 4 lettres (indice 0 à 3). Si je sors dépasse l’intervalle des
indices, la méthode me renverra "", la chaîne vide.

Remarque

Exemple 10.1
let chaine = "étudiant";
console.log(chaine.charAt(0);
console.log(chaine.charAt(8);

"é"
""

ECMAScript 5, a introduit une nouvelle manière de récupérer le caractère à l’indice i :

let lettre = "chaine"[i];

Remarque

Il est aussi possible de comparer les caractères.

Exemple 10.2
let a="o";
let b="h";
console.log(a<b);
console.log(a>b);

false
true

Première partie Page 23 Killian Reine

Le langage JavaScript 2024-2025

Intuitivement, pour vérifier si une chaine ch1 est égale à une autre chaine ch2, vous allez utiliser la forme :

ch1 == ch2

Malheureusement, si vous avez ch1="chat" et ch2="Chat", le programme vous renverra false car l’égalité
avec == prend en compte la casse du texte.
Voici comment contrer ce problème :

function egalite(ch1, ch2){
return ch1.toUpperCase() === ch2.toUpperCase();

}

Égalité de deux chaînes de caractères

Type string primitif :

▶ immuable, c’est à dire qu’elles ne peuvent pas être modifiées après leur création

▶ elle sont plus légères en terme de ressource puisqu’elles sont stockées dans la pile mémoire directement

▶ Leur syntaxe est simplifiée entre " ou ’.

Exemple 10.3
let primi = "Bonjour";

Objet string :

▶ mutable, peuvent être modifiés

▶ possèdent des méthodes associé

▶ les objets string sont construit à l’aide d’un constructeur.

Exemple 10.4
let objetString = new String("Bonjour");

Exemple 10.5
Additionner avec des chaines de caractères.
let primiString = "2 + 2";
let objetString = new String("2 + 2");
console.log(eval(primiString));
console.log(eval(objetString));

4
"2 + 2"

La fonction intégrée eval

La fonction intégrée eval() permet de prendre en argument une chaine de caractère et de l’évaluer comme
du code JavaScript.

code(expression)

Un objet string peut tout de même être converti en équivalent de type primitif :

objetString.valueOff();

Remarque

Première partie Page 24 Killian Reine

Le langage JavaScript 2024-2025

11 Les timers

11.1 setTimeout

La méthode setTimeout est utilisée pour exécuter une fonction (un bloc de code) après un certain temps
(exprimé en millisecondes).

Définition

Instruction générale de setTimeout

setTimeout(fonction, delai, ...args)

• fonction, la fonction à exécuter après le délai.

• delai, le délai en millisecondes avant exécution de la fonction

• ...args (facultatifs), des arguments supplémentaires à passer à la fonction

Exemple 11.1.1
function direBonjour(){

console.log("Bonjour");
}
setTimeout(bonjour, 1000);

Exemple 11.1.2
setTimeout(direBonjour(){

console.log("Bonjour");
}, 1000);

Exemple 11.2
function direBonjour(prenom){

console.log(’Bonjour ${prenom}’);
}
setTimeout(bonjour, 1000, "Alice");

Il est tout à fait possible d’annuléer un setTimeout avec :

clearTimeout(timer);

Remarque

11.2 setInterval

Le méthode setInterval est utilisée pour exécuter une fonction ou un bloc de code de manière répétée, à
intervalle régulier donné en millisecondes.
setInterval continuera d’exécuter le morceau de code tant qu’on ne lui dit pas d’arrêter.

Définition

Instruction générale de la méthode setInterval

setInterval(fonction, intervalle, ...args)

• fonction, le bloc de code a exécuter

• intervalle, au bout de combien de temps le code se répète (millisecondes)

• ...args (facultatifs), arguments passés à la fonction

Première partie Page 25 Killian Reine

Le langage JavaScript 2024-2025

Exemple 11.3
setInterval(function() {

console.log("Un message à afficher toutes les 3 secondes");
}, 3000);

On peut aussi annuler / arrêter un setInterval grâce à l’instruction :

clearInterval(intervalle);

Remarque

12 Code asynchrone

Dans la vie courante, on dit que deux actions sont synchrone lorsqu’elles se déroulent simultanément (en même
temps) ou de manière comme son nom l’indique synchroniser. Au contraire, deux actions sont asynchrone lors-
qu’elles ne se déroulent pas en même temps.

En informatique,

▶ deux opérations sont dites synchrone lorsque la seconde opération attend que la première est terminée
pour s’exécuter. Ducoup, le début de l’opération n+ 1 dépend de la complétitude de l’opération n.
On dit alors que les opérations sont dépendantes les unes des autres.

▶ deux opérations sont donc dites asynchrone lorsqu’elles sont indépendantes les unes des autres, c’est
à dire que l’opération n+ 1 n’a pas besoin de l’opération n pour démarer.

Pour le moment, restons sur le principe de dépendance pour comprendre les définitions de synchrone et
d’asynchrone.

Définition

Prenons un exemple assez imagé, nous avons été manger dans deux restaurants il y a peu et l’organisation
de ces deux restaurants nous ont interpelées.

• Situation asynchrone :
Les clients sont assis à plusieurs tables, si ils le souhaitent, ils peuvent passer commande en même
temps et être servis dès que leur plat sera prêt. En informatique on parle d’opérations asynchrone. Deux
prises de commandes sont indépendantes et l’une n’affecte pas l’autre.

• Situation synchrone :
Maintenant, on imagine que le restaurant ne possède qu’une unique employé qui est à la fois cuisinier
et serveur, dans ce cas, il ne peut prendre qu’une commande à la fois et pourra en prendre une autre
lorsqu’il aura servit la table courante. Par contre, ici les opérations sont dites synchrones.

Synchrone et asynchrone

Pourtant, par défaut, JavaScript est un langage synchrone ce qui signifie que les opérations vont être exécutées
les unes à la suite des autres. Chaque opérations doit donc attendre que la précédante ait terminée, l’opération
précédante est appelée opération bloquante. De plus JavaScript ne peut exécuter qu’une ligne à la fois (le
code s’exécute sur un thread, en gros un fil / processus unique).
Cela peut poser des problèmes, par exemple, si une fonction prend trop de temps à s’exécuter, cette dernière
vas alors bloquer tout le reste des instructions suivante, le programme va donc sembler « arrêté » du point de
vue de l’utilisateur.

Remarque

En JavaScript, les opérations asynchrones sont placées dans une file d’attente qui vont s’exécuter après que la têche
principale (main thread) ait terminée ses opérations. Ce qui ne bloque pas le reste du code.

Première partie Page 26 Killian Reine

Le langage JavaScript 2024-2025

L’idée principale du principe d’asynchrone est que le reste du code puisse continuer à s’exécuter pendant
qu’une opération, plus longue, qui demande une valeur, ... est en cours. D’un côté navigateur web, cela permet
un affichage plus rapide des pages et une meilleure expérience.

1
JAN

Objectif

Une fonction de rappel (ou callback) est une fonction qui va pouvoir être rappelée à un moment et / ou si les
conditions sont réunies.
Les fonctions de rappel étaient utilisé par le premier outil en JavaScript qui a introduit la notion de code asyn-
chrone.

Définition

Exemple 12.1
Précédemment, nous avons rencontré la méthode setTimeout() qui elle est asynchrone. Ce qui signifie que
la suite du code n’a pas besoin d’attendre que le setTimeout soit terminé pour s’exécuter.
setTimeout(alert, 5000, "Message après 5 secondes"):
alert("Suite du script");

Suite du script
Message après 5 secondes

Les fonctions de rappel sont une alternative au code synchrone mais elles possèdent des défauts :

• On ne peut pas savoir quand notre fonction asynchrone aura fini de s’exécuter

• On ne peut donc pas connaître l’ordre d’exécution des fonctions

Cela pose surtout problème si l’exécution d’une fonction asynchrone dépend elle même d’une fonction asyn-
chrone.

Remarque

On peut se passer de la remarque lorsque l’on a qu’une seule opération asynchrone ou si le peu d’opérations
asynchrone qui sont présente sont totalement indépendante.

13 Les promesses, Promise

Pendant longtemps, les fonctions de rappel étaient la seule solution pour pouvoir exécuter du code asynchrone.
Cependant, en 2015, introduction d’un outil permettant la création et la gestion de code asynchrone, les promesses
avec l’objet constructeur Promise. Les promise sont encore aujourd’hui la solution la plus puissante permettant
d’utiliser l’asynchrone dans nos script.

Une Promise est donc un objet qui permet de représenter l’état d’une opération asynchrone. Une Promise,
comme dans la vie réelle peut être :

▶ Opération en cours

▶ Opération terminée avec succès

▶ Opération échouée

Définition

Alors, au lieu d’appeler de nombreuses fonctions de rappel, nous allons créer ou utiliser des fonctions qui vont
renvoyer des promesses et nous allons introduire des fonctions de rappel dans les Promise. Ce qui permettra alors
de connaître l’ordre d’exécution des opérations asynchrone.

Première partie Page 27 Killian Reine

Le langage JavaScript 2024-2025

Structure d’une Promise

const promesse = new Promise((resolve, reject) => {
// Tâches asynchrone à réaliser
// Appel de resolve() si la promesse est résolue (= tenue)
// Appel de reject() si la promesse a échouée

}

Une Promise permet donc de de représenter et manipuler un résultat, un événement futur ce qui nous permet
donc de définir ce que va faire le programme à l’avance après une opération asynchrone terminée, qu’elle soit
résolue ou échouée.

Remarque

Dans la majeure partie des cas, nous n’aurons pas besoin de créer nos propre Promise en utilisant le contructeur
mais plutôt de manipuler les promesse déjà créées. Les promesses vont être utilisé le plus souvent par des API
JavaScript réalisant des opérations asynchrones.

Exemple 13.1
Lorsque vous appelez vos amis sur l’appli Discord, l’on vous demande quel caméra utiliser (si il y en a une, et
laquelle) et pareil pour le micro.
Sans code asynchrone, la fenêtre du navigateur / appli vas rester bloquée pour l’utilisateur tant que ce dernier
n’ai pas cclairement autorisé quel caméra/micro utiliser.

Après la création d’une promesse, cette dernière vas alors posséder deux propriétés :

• state, qui représente l’état de la promesse
En attente (pending), fulfilled (résolue) ou rejected (échouée).

• result qui vas pouvoir contenir la valeur de notre choix

L’état final d’une promesse ne peut pas être changé.
Remarque

La méthode then() est utilisée pour obtenir et exploiter le résultat d’une Promise.
Autrement dit, on utilise la méthode then pour définir ce qu’il se passera si la promesse et résolue ou si elle a
échouée.

Définition

Exemple 13.2
let promesse = new Promise((resolve, rejecte) => {

let reussite = true;
if (reussite) {

resolve("La promesse a été résolue");
} else {

reject("La promesse a échouée");
}

});
promesse

.then((message) => {
console.log(message);

})
.catch((erreur) => {

console.log(erreur);
});

La promesse a été résolue

Première partie Page 28 Killian Reine

Le langage JavaScript 2024-2025

La méthode catch() quant-à elle, est utilisée lorsqu’une promesse est rompue.

Définition

13.1 Chainage des promesses

Chainer des méthodes c’est les exécuter les unes après les autres. Cette méthode va s’avérer utile pour exécuter
des opérations asynchrones les unes à la suite des autres dans un ordre précis.
Cette méthode est possible car la méthode then() renvoie une promesse. On vas donc pouvoir utiliser une méthode
then sur le résultat renvoyé par la première méthode then.

Exemple 13.3
Dans notre exemple on souhaite réaliser deux opérations asynchrones :

• Récupérer des données sur un serveur

• Traiter les données récupérées

function recupererDonnees(){
return new Promise((resolve, reject) => {
setTimeout(() => {

const donnees = { id: 1, nom: "Alice" };
console.log("Données récupérées", donnees);
resolve(donnees);

}, 2000);
});

}
function traiterDonnees(donnees) {

return new Promise((resolve, reject) => {
setTimeout(() => {

donnees.traitement = "Données traitées";
console.log("Données après traitement", donnees);
resolve(donnees);

}, 1000);
});

}
// Chainage des promesses
recupererDonnees()

.then((donnees => {
// Appel de la seconde fonction asynchrone
return traiterDonnees(donnees);

})
.then((donneesTraitees) => {

// Traitement final après que les données soient traitées
console.log(Traitement final :", donneesTraitees);

})
.catch((erreur) => {

console.log("Une erreur est survenue !", erreur);
});

Démarage...
2 secondes s’écoulent les données sont récupérées
Données récupérées : id : 1, nom : ’Alice’
1 seconde s’écoule, le traitement est efféctuée
Données après traitement : id : 1, nom : ’Alice’, traitement : ’Données traitées avec succès’
Traitement final : id : 1, nom : ’Alice’, traitement : ’Données traitées avec succès’

Première partie Page 29 Killian Reine

Le langage JavaScript 2024-2025

Le texte en gris dans le résultat du programme ne s’affiche pas, il n’est là que pour nous permettre de mieux
comprendre la simulation.

Remarque

13.2 Composition de promesses

Composer des fonctions signifie combiner plusieurs fonctions pour en donner une nouvelle.

Définition

De la même manière, nous pouvons composer des promesses. Heureusement des méthodes associées au construc-
teur Promise() existent.

Nous, on a vu que l’on pouvait utiliser resolve() et reject() qui nous permettent de créer manuellement
des promesses déjà résolues ou échouées et qui vont être utiles pour démarer une chaine manuellement.

Remarque

La méthode all prend en argument un tableau de promesses et retourne une nouvelle promesse. Cette der-
nière sera résolue si l’ensemble des promesses contenues dans le tableau sont résolues.
Ce qui signifique que si au moins une des promesse échoue, la nouvelle promesse renvoyée sera échouée.

La méthode all()

Structure générale de la méthode all()

Promise.all([promesse1, promesse2, ...])
.then(([val1, val2, ...]) => {

// Code a exécutée si toute les promesses sont résolues
})
.catch((erreur) => {

// Code a exécutée si une promesse échoue
});

14 La syntaxe async ... await

La déclaration async function et le mot clé await sont des « sucres syntaxiques », autrement dit, ils
n’ajoutent pas de nouvelle fonctionnalité à JavaScript, mais ils permettent d’utiliser des promesses avec un
code plus intuitif et qui ressemble d’avantage à la syntaxe du langage, à laquelle nous somme habitués.
Ils sont apparus en 2017 et aujourd’hui utilisé par les API modernes.

Définition

Utiliser le mot clé async devant une fonction va alors faire en sorte que votre fonction retourne une promesse.
Si votre fonction retourne explicitement une valeur, alors cette dernière sera envelopper dans une promesse.

Exemple 14.1
async function bonjour(){

return "bonjour";
}
console.log(bonjour());

Promise : { bonjour }

Première partie Page 30 Killian Reine

Le langage JavaScript 2024-2025

Le mot clé await est valide uniquement dans les fonctions asynchrones définies avec async.
Remarque

Le mot clé await permet d’intérompre l’exécution d’une fonction asynchrone tant qu’une promesse n’est pas résolue.
Ensuite, cette dernière pourra continuer à s’exécuter et renverra sa valeure finale d’exécution.

Exemple 14.2
async function test() {

const promesse = new Promise((resolve, reject) => {
setTimeout(() => resolve("Ok"), 2000)

});
let resultat = wait promesse;
console.log(resultat);

}

await promise retourne le résultat d’une promesse qui est résolue (échec ou résolue).
Remarque

La syntaxe try ... catch permet de retourné l’erreur causée par un await.

Structure de la syntaxe try ... catch

try {
// Code a tester
// Alerte a retournée si erreur

} catch(erreur) {
// Affichage de l’erreur

}

all() est aussi utilisable avec la syntaxe async/wait.
Remarque

15 La méthode fetch()

La méthode fetch()

La méthode fetch() permet de faire des appels HTTP afin de récupérer des ressources sur le réseau.
Cette dernière utilise le même système que les promesses vues précédemment.

Structure de la méthode fetch()

fetch("url", option)
.then(reponse => {

// Traitement de la réponse reçue
});
.catch(erreur => {

// Gestion des erreurs
});

La promesse est résolue et retourne un objet Response. Cet objet contient des informations détaillées sur la réponse
de la requête HTTP, y compris le statut de la réponse, les en-têtes, et les données renvoyées par le serveur.

Première partie Page 31 Killian Reine

Le langage JavaScript 2024-2025

Quelques propriétés associées à l’objet Response.

▶ ok est un booléen qui vaut true si le statut HTTP est compris entre 200 et 299, ce qui indique que la
requête a été traitée avec succès

▶ status renvoi le statut HTTP de la réponse (200 pour OK, 404 pour Not Found)

▶ statusText indique le message associé au statut HTTP (par exemple "OK" pour 200)

▶ header, url, type, ...

Remarque

text() et json()

▶ json() renvoi la réponse au format JSON

▶ text() renvoi le texte de la réponse

16 Les modules

Pour vos projets, créer l’intégralité du code sur un seul et même fichier n’est pas pratique. C’est la raison pour laquelle
les modules sont indispensables, ils vont vous permettre de diviser votre code en différents fichiers, ce pour vous
aider à bien l’organiser.
Il est possible d’exporter des variables pour les rendres accessibles via un autre fichier.

Exemple 16.1
export const var = "Alicia";
export function maFonction () {

console.log("Bonjour tout le monde");
}
export class maClass () {

constructor(param) {
this.param = param;

}
}

Pour un fichier/module il ne peut n’y avoir qu’une exportation par défaut.
On utilisera alors export default...

Remarque

Exemple 16.2
Ici, on souhaite importer dans le fichier import.js rapidement les informations de l’exemple 16.1 contenues
dans le fichier exemple.js.

import{ var, maFonction, maClass } from "./exemple.js";

Pour importer tout le contenu d’un fichier

import * from "./exemple.js";

Première partie Page 32 Killian Reine

	Les variables
	Généralités sur les variables
	Types courrant de variable
	Oppérations sur les variables
	Oppérations arithmétique
	Incrémentation et décrémentation
	Opération de comparaison
	Opérations logique

	Concaténation des chaînes de caractères
	Conversion de variable
	Types plus complexes
	Les objets
	Les tableaux

	Les types spéciaux

	Copie par valeur, copie par référence
	Copie par référence
	Copie par valeur

	Les conditions
	Le switch / case
	Le ternaire

	 Portée des variables
	Les boucles
	La boucle while
	La boucle for
	Boucle for...in
	Boucle for...of

	Les fonctions
	Portées des variables
	Hosting de variable
	Hosting de fonction

	L'opérateur this
	Les fonctions fléchées
	Fonctions usuelles

	Les classes
	Introduction aux prototypes
	Création d'objets et de prototypes
	Fonction de constructeur
	Constructeur de class
	Les getters et les setters

	Propriété publique, propriété privée
	Introduction à l'héritage de class
	Exemple avec les fonctions de constructeur
	Exemple avec les class

	Gestion des erreurs
	Vérification des types
	Vérification spécifique des objets

	Objets et types avancés
	Objet Date
	Les expressions régulières
	Création d'une expression régulière
	Recherche de motif dans une chaine de caractère
	Renvoyer toute les correspondances
	Renvoyer l'indice de correspondance
	Remplacement de motif

	La valeur NaN

	Méthodes associées aux objets de type string
	Les timers
	setTimeout
	setInterval

	Code asynchrone
	Les promesses, Promise
	Chainage des promesses
	Composition de promesses

	La syntaxe async ... await
	La méthode fetch()
	Les modules

