Fiches de cours

Apprendre a programmer en JS

Programmation JavaScript

Killian Reine

Table des matieres

[1_Les variables| 3
3

1.2 lypescourrantdevariablel. L 3
1.3 Oppérations surlesvariables] 4
T.3.9__Opperations amhmEIqUE]« o oo oo e e e e 4
1.3.2_Incrémentation et dECrémentation] v v v vt et e 4

1.3.3 Opération de comparaison| i 5

1.3.4 Opeérations 1ogiquel e e 5

1.4 Concatenation des chaines de caracteres| 6
1.5 Conversiondevariablel. e e e e 6
(1.6 _Typespluscomplexes| 6
T80 LES ODJOIS - - . « v v e e e e e 6

.6 esfableaux] L e 7

[1.7 Lestypes SPECIaUX| o it e e e e e e e e 8

{2 Copie par valeur, copie par reference 8
[2.1 Copie parreterencel 8
22 Copieparvaleur] 8

B Les conditions] 9
3.1 lLeswitch/casel. e e e 9
B.2 _Leternairel e e e e e e 9

|4 Portee des variables| 10
b Les boucles| 10
5.1 Laboucle w = 10

11

11

11

11

12

6.1.1 Hostingde variable|. e e 12

B2 HOSUNG B FONCHON . - « « « o« o oot e e e e e e e e e e e 12

6.2 Lopérateur this| e e e e e e e e e e 13

6 es fo 0 EChEES| e 13
6.4 Fonctions usuelles| e e e 14
[7_Les classes| 14
|Z1 !ntro@uctlon aux prototypes| 14
/.2 reation d'objets et de prototypes| 15
....................................... 15

[72.2 Constructeurdeclassl e 15

[7.2.3 Lesgettersetlessetters| 16

7.3 Propriéte publique, propriete priveel. e e e 17
7.4 Introduction a 'héritagedeclass| o 18
............................. 18

[74.2 Exemple aveCcles Class| o i i i e e 18
[8__Gestion des erreurs| 18
... 19
[8.2 Vérification spécifique des ODJets| o o e e 20

Objets et types avances| 20

9.1 OpjetDatel 20
|9.2 Les expressions regulieres| 21
9.2.1 reation d'une expression regulierel L L e 21

9.2.2 Recherche de motif dans une chaine de caractere! 21

[9.2.3 Renvoyer toute les correspondances|. oL 21

9.2.4 Renvoyer I'Indice de COIrespoNdanCe| v v v v v v v e e e e e e e e e e 22

9.2.5 Remplacementde motif] 22

9.3 LavaleurNaN| o e e e e e e e e 22
(10 Methodes associees aux objets de type string| 23
25
AT SetTimeout] v o o e o e e e e e e e 25
1.2 setIntervall o o e e e e e e e e e 25
(12 Code asynchrone| 26
|13 Les promesses, Promise| 27
13.1 Chalnage des promesSes| i i i i e e e e e e e e e e e e e e 29
13.2 Composition de PromMESSES| o o v i e e e e 30

(14 La syntaxe async ... await| 30
(15 La méthode fetch()| 31
{16 Les modules| 32

Le langage JavaScript 2024-2025

1 Les variables

1.1 Généralités sur les variables
Définition

Une variable permet de stocker une donnée.

Une donnée est une information, que I'on range dans une variable. Elle possede un nom qui permet de
I'identifier et un type, qui indique la nature de I'élément stocké (lettre, nombre, .. .).

L J

Déclarer une variable

En JavaScript, il est possible de déclarer des variables de plusieurs maniéres différentes.

 Variable statique

const nomVariable = valeur ;

Une variable déclarée avec le mot clé const est non-mutable, c’est a dire qu’elle ne peut pas changer
de valeur.

+ Variable dynamique

let nomVariable = valeur ;

Une variable déclarée avec le mot clé 1et est mutable, on peut donc la changer.
Si vous souhaitez afficher des résultats dans la console, il suffirat d'utiliser :

console.log(nomVariable) ;

1.2 Types courrant de variable

En JavaScript, il existe plusieurs types de variable. Les plus courrants sont :
* Les nombres Number
* Les caracteres et les chaines de caractéres String
* Les booléens, vrai ou faux Boolean

Exemple 1.1

let prenom = "killian";
let age = 18;

const sexe = "masculin";

let majeur = true;

Complément sur le type String

() Remarque

| Les chaine de caractéres peuvent étre données entre simple guillemet, double guillements, ou méme entre
backtick que I'on utilise en MarkDown et sur discord.

Ajouter une apostrophe

let chaine = ’Une chaine d\’aujourd’hui’;

Premiére partie Page 3 Killian Reine

Le langage JavaScript 2024-2025

Ajouter une variable Une chaine sur plusieurs lignes
let chaine = ’prenom : ${variable}’; let paragraphe = ‘je suis
sur

plusieurs lignes®;

1.3 Oppérations sur les variables

1.3.1 Oppérations arithmétique

Exemple 1.2
let a = b5;
let b = 6;

let sum = a + b; //Addition
console.log(sum) ;

[

let diff = a - b; //Différence
console.log(diff);

E

let prod = a * b; //Produit
console.log(prod);

30

let div = a/b; //Division, quotient
console.log(div);

[0.83333333333

let mod = a % b; //Modulo
console.log(mod) ;

5

Remarque

| Les oppérations d’assignations peuvent aussi étre utilisées : +=, -=, *=, /= =

1.3.2 Incrémentation et décrémentation

Exemple 1.3
let a = 0;
let b = 3;
at+;

b--;

console.log(a, b);

12

Premiére partie Page 4 Killian Reine

Le langage JavaScript 2024-2025

1.3.3 Opération de comparaison

Les opérations de comparaison valides.

« Inférieur strict <, Inférieur ou égal <=

» Supérieur strict >, Supérieur ou égal >=
« Egalité ==, égalité stricte ===

« Différence !=, différence stricte !==

4 A
/OZoom
Comparaison d’égalité
Exemple 1.4
let a = 12;
let b = "12";
let ¢ = 12;

console.log(a==b, a===b, a===c);

[true false true

Comparaison de différence

Exemple 1.5
let a = 12;
let b = "12";
let ¢ = 12;

console.log(a=!b, a==!b, a==!c);

[false true false

L La comparaison stricte tient compte du type des variables mises en jeu)

() Remarque

| Lasyntaxe //... pour insérer des commentaires.

1.3.4 Opérations logique

Exemple 1.6

ET logique

let a = true;

let b = true;

console.log(a && b); //renvoie true

OU logique

console.log(a || b); //renvoie true

NON logique

console.log(!a); //renvoie false

Si besoin, petit rappel sur les tables de vérités du ET, OU et NON logique.

Premiére partie Page 5 Killian Reine

Le langage JavaScript 2024-2025

1.4 Concaténation des chaines de caractéres

Exemple 1.7
let chaine = "Bonjour";
let chaine2 = "le monde";

let nombre = 47;
console.log(chaine+=chaine?2);

Bonjourle monde

console.log(chaine+nombre) ;

~

Bonjour47

\.

et oui, en JavaScript on peut ajouter des chaines e de caractéres et des nombres ensembles.

1.5 Conversion de variable

Conversion en entier

Pour convertir une chaine de caractére en nombre :

let nombre = Number (chaine) ;

Exemple 1.8
let c1 = "2";
let nb = 4;

console.log(Number(cl);

2

console.log(nb+cl, nb+Number(cl));

7~

ll42ll’ 6

1.6 Types plus complexes

Les types suivants seront étudiés en détail plus tard dans le cours.

1.6.1 Les objets

Définition
| Un objet permet de stocker diverses informations de différents types dans un méme endroit.

Stucture générale d’un objet

const nomObjet = {
eleml : vall,
elem2 : val2,

elemn : valn

};

Premiére partie Page 6 Killian Reine

Le langage JavaScript 2024-2025

Exemple 1.9
On vas créer un objet éleve et on vas stocker ses informations personnelles ainsi que ses notes.
const eleve = {

nom : "Reine",

prenom : "Killian",

sexe : "M",

dateNaissance : "16/09/2005",
age : 18,

notes : [12, 15, 7, 20]

};

console.log(eleve.nom, eleve[’nom’]);

"Reine", "Reine"

console.log(eleve.notes[3], eleve[’notes’][1]);

20 15

(@ Remarque

| Les objets peuvent contenir eux aussi des objets.

1.6.2 Les tableaux

J

Définition
Les tableaux permettent de stocker une liste d’'information. Cette liste peut contenir n'importe quel autre type
de variable (un tableau peut méme contenir un autre tableau).

,
L

Structure générale d'un tableau

monTableau = [eltl, elt2, ..., eltn];

Méthodes associées aux tableaux

» accéder a I'élément n

monTableaul[n];

* ajouter un élément a la fin du tableau

monTableau.push(nvValeur) ;

 Supprimer le dernier élément

monTableau.pop();

« afficher la taille du tableau

monTableau.length;

(8 Remarque

| Une liste peut elle méme contenir une liste, c’est ce qu’on appelle tableau a n-dimentions.

Premiére partie Page 7 Killian Reine

Le langage JavaScript 2024-2025

1.7 Les types spéciaux

» undefined est le type qui apparaitra lorsque vous essayer d’accéder a une valeur inexistante.
Par exemple quand vous souhaitez accéder a un élément d’'un tableau mais que vous étes sorti de ce dernier.
» null absence de valeur.

» NaN Not a Number.

2 Copie par valeur, copie par référence

2.1 Copie par référence

Lorsque I'on copie une variable par référence, dans notre cas, la variable copielListeInitiale pointe vers la méme
liste que listeInitiale C’estlaraison pour laquelle lorsque 1isteInitiale est modifiée alors copieListeInitiale
I'est aussi.

Exemple 2.1

let listelInitiale = [1, 2, 3];

let copielisteInitiale = listelnitiale;
//Affichage des listes avant modification
console.log(listeInitiale, copieListelInitiale);

[1,2,3][1, 2, 3]

//Modification de la liste initiale
listeInitiale.push(4);

//Affichage des listes aprés modification
console.log(listeInitiale, copielListeInitiale);

[[1,2,3,4][1, 2, 3, 4]

2.2 Copie par valeur

Lors de la création de la variable copielListeInitiale, on utilise la fonction 1ist() qui vas en fait créer une
nouvelle liste contenant la méme chose que 1iste Initiale.

Exemple 2.2

let listeInitiale = [1, 2, 3];

let copielisteInitiale = Array.from(listeInitiale);
//Affichage des listes avant modification
console.log(listeInitiale, copieListelInitiale);

[[1,2,3][1, 2, 3]

//Modification de la liste initiale
listeInitiale.push(4);

//Affichage des listes aprés modification
console.log(listeInitiale, copieListelInitiale);

[1,2,3,4][1, 2, 3]

Premiére partie Page 8 Killian Reine

Le langage JavaScript 2024-2025

3 Les conditions

Structure de la condition if

if (condition <1>) {
instructions si <1> vrai;

} else if (condition <2>) {
instructions si <2> vrai;

} else {
instruction si <1> et <2> sont faux;

}

\. .

() Remarque

* On a vu les différents opérateurs de comparaison

+ Attention, lorsque I'on compare des objets, méme si ces derniers ont les mémes propriétés, il ne sont pas considéré:

Exemple 3.1
{a:1}={a:11}; //false
{2} =11 //false

== []; //false

NaN == NaN; //false

Saisie utilisateur

Pour permettre a l'utilisateur de saisir des informations dans une boite de dialogue :

let saisie = prompt("Tapez quelque-chose : ");

3.1 Le switch/ case

Structure de la switch/case

switch (valeurATester) {
case proposition<1> :
instruction si valeurATester == proposition<1>;
case proposition<2> :
instruction si valeurATester == proposition<2>;
break
case proposition<n> :
instruction si valeurATester == proposition<n>;
default :
instruction a effectuer par défault;

}

Au lieu de faire n conditions if et else if, vous pouvez utiliser cette structure qui permet aussi de gérer les excep-
tions (= erreurs).

3.2 Le ternaire
Définition

| Le ternaire est un opérateur conditionnel qui permet de réduire une condition du type if else en une seule
ligne.

L J

Structure du ternaire

let ternaire = (condition 7 <valeur si vrai> : <valeur si faux>);

Premiére partie Page 9 Killian Reine

Le langage JavaScript 2024-2025

Exemple 3.2

//Déterminer si je suis majeur ou mineur

const age = 18;

const statut = (age >=18) 7 "majeur" : "mineur";
console.log(statut) ;

"majeur"

4 Portée des variables

Définition
» Une variable globale peut étre utilisé partout dans notre code, elle est souvent déclarée au début du code.

» Une variable locale peut étre utilisé dans un bloc de code bien précis, les parameétres d’une fonction sont
des variables locales utilisables uniquement a l'intérieur de celle-ci.

() Remarque

On peut avoir deux variables qui comporte le méme nom mais une portée différente.

Exemple 4.1
let variable = 2; //Variable GLOBALE
if (true) {
let variable = 5; //Variable LOCALE
console.log("variable dans le if
X

console.log("variable hors du if : ", variable);

", variable);

variable dans le if : 5
variable hors du if : 2

5 Les boucles

5.1 Laboucle while

La boucle while permet d’exécuter un méme code en boucle tant qu’une condition est vraie.
Attention, a bien faire attention a la condition d’arrét (qui devra forcément devenir faux) de votre boucle while au
risque de faire une boucle infinie...

Structure de la boucle while

while (condition) {
instructions tant que condition est vraie;
}
On peut aussi mettre la condition en fin de boucle avec do. . .while
do {
Instructions tant que condition est vraie;
} while (condition)

forcer la sortie d’'une boucle

break;

Premiére partie Page 10 Killian Reine

Le langage JavaScript 2024-2025

5.2 Laboucle for

La boucle for permet d’exécuter un code un certain nombre de fois en précisant manuellement l'intervalle pour
lequel on souhaite faire la boucle.

Structure de la boucle for

for (let variable = vallnitiale ; condition ; incrementer variable) {
// Instructions

5.2.1 Boucle for...in

La boucle for...in permet d’itérer sur les éléments énumérables. Elle permettra de récupérer les clefs d’un tableau
ou les propriétés d’un objet

Structure du for...in

for (const var in objet) {
// instructions

3

5.2.2 Boucle for...of

La boucle for. . .of permet de boucler sur un objet itérable en renvoyant les valeurs a chaque itération.

Structure du for. . .of

for (const var of objet) {
// instruction & itérer sur chaque éléments de objet

3

6 Les fonctions

Définition
Les fonctions permettent de stocker en mémoire une certaine logique que 'on pourra utiliser a plusieurs

reprises dans la suite de notre code. Elles prennent en général des paramétres et retournent un résultat
particulier.

Strucure d’'une fonction

function nomFonction (parametres) {
return;

}
//Pour appeler la fonction
nomFonction(parametres);

() Remarque

Les fonctions en JavaScript sont un type de variable particulier, il est donc aussi possible de ne pas leur donner
de nom, mais de les stocker dans une variable de maniére classique.
const nomFonction = function (parametres) {

return;

};

Premiére partie Page 11 Killian Reine

Le langage JavaScript 2024-2025

6.1 Portées des variables

Une fonction déclarée dans une variable aura la méme portée que les variables (limité au bloc courant). Par contre
une fonction déclarée directement avec le mot clef function aura une portée plus globale.
Aussi, I’hoisting fera qu’une fonction peut étre appelée avant d’étre déclarée.

W Définition

Le terme "hosting" en JavaScript fait référence a la maniére dont les variables sont stockées et accessibles
dans différents environnements, tels que les fonctions ou les blocs de code. En termes simples, c’est I'endroit
ou une variable est déclarée et ou elle peut étre utilisée dans votre code.

En JavaScript, il existe deux types de hosting :

* hosting de variable

* hosting de fonction

6.1.1 Hosting de variable

Lorsque vous déclarez une variable avec var, let, ou const, elle est "hébergée" au début de la portée dans laquelle
elle est déclarée, mais elle reste "indéfinie" jusqu’a ce que I'exécution du code atteigne la ligne ou elle est déclarée.

Exemple 6.1

console.log(x); // Renvoie undefined
var x = 10;

console.log(x); // Renvoie 10

En réalité, le code ci-dessus est interprété comme suit par le moteur JavaScript :
var X;

console.log(x); // Renvoie undefined

x = 10;

console.log(x); // Renvoie 10

6.1.2 Hosting de fonction

Les fonctions sont également "hébergées" au début de leur portée, ce qui signifie que vous pouvez appeler une
fonction avant sa déclaration dans le code.

Exemple 6.2

sayHello(); // Renvoie "Bonjour!"

function sayHello() {
console.log("Bonjour!");

};

Revient a coder :

function sayHello() {
console.log("Bonjour!");

+

sayHello(); // Renvoie "Bonjour!"

Premiére partie Page 12 Killian Reine

Le langage JavaScript

2024-2025

6.2 Lopérateur this

Exemple 6.3

function nomFonction () {
console.log(this);

}

nomFonction.call(4);

K

Dans notre cas, this prendra la valeur du paramétre de la fonction.

Exemple 6.4
const variable = {
prop : 42,
maFonction : function(){
return this.prop;
e
Ig

console.log(a.maFonction());

42

6.3 Les fonctions fléchées

Les fonctions fléchées sont une syntaxe alternative (plus courte) pour les fonctions.
Ces fonctions ont comme particularité de ne pas posséder de valeur this.

Exemple 6.5

const maVariable = (parametre) => {
return parametre+4;

}

maVariable(2);

6

() Remarque

| si il n’'y a qu’une instruction de retour, on pourra simplifier 'appel en retirant les accolades. On pourra aussi

retirer les parentheses si il 'y a qu’'un parametre.

Exemple 6.6
const double = (n) => {
return 2 * n;
}
// On peut simplifier en retournant directement en retirant les accolades
const double = (n) => 2 * n;
// Et on peut retirer les parenthéses
const double = n => 2 * n;

Premiére partie Page 13

Killian Reine

Le langage JavaScript

2024-2025

6.4 Fonctions usuelles

Et oui, certaines méthodes / fonctions sont a connaitres car trés souvent utilisées. Certaines ressemblent a ceux déja

vues en python par exemple.

Trancher une chaine de caractere

maChaine.split(separateur) ;

Mettre le texte en majuscule

maChaine.toUpperCase();

Inverser les éléments dans une liste

maliste.reverse();

Mettre le texte en minuscule

maChaine.toLowerCase();

Refusionner les éléments d’une liste

maChaine. join(fusionneur) ;

Remplacer tout les méme mots

maChaine.replaceAll (mot, remplace);

Exemple 6.7
const chainePrincipale
const chaineReverse

"Bienvenue a vous";

chainePrincipale.reverse();

console.log("chaineReverse :", chaineReverse);
const chaineListe = chainePrincipale.split(" ");
console.log("chaineListe :", chaineliste);

const chaineMaj chainePrincipale.toUpperCase();
console.log("chaineMaj :", chaineMaj);
const chaineMin = chainePrincipale.toLowerCase();
console.log("chaineMin :", chaineMin);

const chaineU = chainePrincipale.replaceAll("u", "OUU");

console.log("chaineU :", chainelU);
chaine reverse : erreur
ChalneLiSte [IIBII llill llell llnll llvll s llell , llnll , l|ull , Ilell , n n , Ilé.ll , n n , IIVII , Iloll ,
nun s "S"]
chaineMaj "BIENVENUE A VOUS"
chaineMin : "bienvenue & vous"
chaineU : "BienvenOUUe & voOUUs"

o)
(8 Remarque

erreur (voir exemple du dessus).
Pour inverser une liste :

+ Convertir la chaine principale en liste avec split()
* Inverser la liste avec reverse()

» Ré-assembiler la liste pour obtenir la chaine résultan

7 Les classes

7.1 Introduction aux prototypes

Pour inverser une chaine de caractére, il ne suffit pas de taper chaine.reverse()

. Ceci, vous renverra une

te inversée avec join()

Pour rappel, JavaScript est un langage de programmation orienté objet, mais il se distingue des autres langages car

il utilise un systéme de prototype au lieu de classes.

Premiére partie Page 14

Killian Reine

Le langage JavaScript 2024-2025

Définition
En JavaScript, chaque objet possede un lien vers un autre objet appelé prototype. D’ailleur, un prototype

peut lui-méme avoir un prototype et ainsi de suite, ce qui forme donc une chaine de prototypes. Ce mécanisme
est utilisé pour I'héritage.

Accéder au prototype d’un objet

Soit objet un objet créé et initialisé au préalable, afin d’accéder a son prototype, on utilisera l'instruction
suivante :

Object.getPrototypeOlf (objet)

Nous pouvons bien sir récupérer le prototype d’une fonction, d’'une classe avec cette instruction.

Les codes déclarés (créés) avec class et function renvoient une fonction [[Prototypel]. Avec les prototypes,
chaque fonction peut devenir une instance de constructeur en utilisant new.

(8 Remarque

| Rappelons qu’une instance désigne en fait une copie de la fonction/class qui possede ces propres valeurs et
qui permet d'accéder aux méthodes associées a la class principale.

7.2 Création d’objets et de prototypes
7.2.1 Fonction de constructeur

Les fonctions constructeurs permettent de créer des instances qui possedent les mémes propriétés.

Exercice 7.1
function Personne (prenom, age) {
this.prenom = prenom;
this.age = age;
}
Personne.prototype.bonjour = function() {
return ’Bonjour, je m’appelle ${this.prenom} et j’ai ${this.agel} ans.’;

3

// Création d’une instance de classe
const alice = new Personne("Alice", 50);
console.log(alice.bonjour());

Bonjour, je m’appelle Alice et j’ai 50 ans.

7.2.2 Constructeur de class

Exemple 7.2, renvoi la méme chose que 'exemple 7.1
class Personne {
constructor(prenom, age) {
this.prenom = prenom;
this.age = age;
}
bonjour {
return ’Bonjour, je m’appelle ${this.prenom} et j’ai ${this.agel} ans.’;
}
}
const alice = new Personne("Alice", 50);
console.log(alice.bonjour());

Premiére partie Page 15 Killian Reine

Le langage JavaScript 2024-2025

Remarque

| Gréce aux exemples 7.1 et 7.2, nous venons de voir comment assigner des méthodes a une fonction de
constructeur et a une class.

Fonction constructeur avec assignation d’'une méthode

// Fonction de constructeur
function fonctionConstructeur (parametres){
// Code permettant 1’initialisation du constructeur

3

// Assignation d’une méthode
fonctionConstructeur.prototype.nomMethode = function(parametres) {
// Code de la méthode associée & la fonction de constructeur

3

Class avec un constructeur et une méthode

class nomClass {
constructor (parametres) {
// Code permettant 1’initialisation du constructeur

}
}
nomMethode = function(parametres) {
// Code de la méthode
}
}

() Remarque

Le constructeur permet en fait d’initialiser les propriétés, attributs d’'un objet. Cela garantit que I'objet en question
est exécuté au départ de maniére cohérente et sans erreurs.
Un peu plus tard, nous observerons le rble des constructeurs dans I'héritage.

7.2.3 Les getters et les setters

Définition
» Les getters sont des mini-méthodes qui permettent d’accéder au contenu des propriétés d’'un objet
» Les setters eux, permettent de modifier la valeur des propriétés d'un objet.

Cela garantit alors la protection des données internes d’un objet en contr6lant comment on peut y accéder et
les modifier.

Structure d’'un getter et d’'un setter

class Personne {
// Constructeur de ma class
constructor (prenom, age) {
this._prenom = prenom;
this._age = age;

b
get variable(){
return this._variable
}
set variable(nouv){
this._prenom = nouv; return this._variable

3

Premiére partie Page 16 Killian Reine

Le langage JavaScript 2024-2025

Remarque

Les getters et setters ne peuvent pas avoir le méme nom qu’une propriété.

Comme vous l'avez sGrement remarqué, juste aprés les this de notre constructeur nous utilisons la forme
propriété. Lunderscore "" est une convention en JavaScript qui permet d’indiquer que les propriétés /
variables de la class ne sont utilisable qu’en interne.

Pour faire court qu’elles ne devraient pas étres accessible ou modifiable directement hors de la class.

7.3 Propriété publique, propriété privée

On vient donc d’évoquer I'underscore (_) qui permet seulement de spécifier que I'utilisation des propriétés de la
classe ne peut s’en faire qu’en interne.

Malheureusement, comme écrit cette convention ne fais que spécifier (= indiquer) que I'utilisation doit se faire ainsi,
au final ¢a ne change rien sur I'utilisation des propriétés puisqu’elles sont quand méme modifiable hors de la class.
Cependant, ES6 introduit les champs privé grace au préfixe #.

/OESG

ESB6, plus connu sous le nom de ECMAScript 2015 est la sixieme édition du langage ECMAScript qui constitue
une mise a jour majeure de JavaScript.

Publiée en juin 2015 par ECMA International, cette version introduit de nombreuses fonctionnalités et amélio-
ration du langage permettant ainsi le développement de logiciel plus complexe et maintenable.

Exemple 7.3
class Personne {
constructor (prenom, age){
this.#prenom = prenom;
this.#age = age;
}
get prenom(){
return this.#prenom;
}
set prenom(nouveauPrenom){
this.prenom = nouveauPrenom;
}
}
const alice = new Personne("Alice", 50);
console.log(alice.#prenom);

erreur
/I on ne peut plus accéder directement aux propriétés, il faut passer par les getters et setters

// Cette fois, on accéde & la propriété prénom, en utilisant un getters
console.log(alice.prenom) ;

[Alice

alice.prenom = bob;
console.log(alice.prenom) ;

erreur
// Vous essayez de modifier la valeur de prenom sans passer par un setters

Premiére partie Page 17 Killian Reine

Le langage JavaScript 2024-2025

7.4 Introduction a I’héritage de class

L'héritage permet dans les langages orienté objet la réutilisation du code, en créant de nouvelles class basées sur
celles déja existantes en réutilisant les propriétés, méthode de cette derniére.
La class sur laquelle la nouvelle s’appuie sera appelée class parente.

7.4.1 Exemple avec les fonctions de constructeur

Exemple 7.4
Nous allons reprendre notre fonction de constructeur (exemple 7.1) Personnage et nous allons créer une
nouvelle sous-fonction que nous nomerons superHeros avec un nouvel attribut qui sera le pouvoir.

function superHeros(prenom, age, pouvoir) {
Personnage.call(this, prenom, age);
this.pouvoir = pouvoir;

}

7.4.2 Exemple avec les class

Les class, introduites pas ES6 utilisent le mot clé super au lieu de call pour accéder aux fonctions parents. Pour
renvoyer a la class parents, on utilise extends.

Exemple 7.5
Méme principe que I'exemple précédant, sauf que Ia, on prend la class Personnage.

class superHeros extends Personne {
constructor (prenom, age, pouvoir) {
super (prenom, age);
this.pouvoir = pouvoir;

}

8 Gestion des erreurs

Jusqu’a lors, nous n'avons pas pris compté des erreurs qu’il peut exister dans notre code. Puisque lorsque I'on code
des fonctions, elles ont souvent des parameétres d'un type voulu. Mais vous avez slrement remarqué que aucun
systeme ne vérifie la validité des paramétres donnés.

Exemple 8.1
Un professeur d’informatique vient de coder une fonction qui calcul la moyenne de ses éléves.
function moyenne(notes) {

nbNote = notes.length;

sommeNote = 0;

for(i = 0; i<notes.length; i++) {

sommeNote += notes[i];

}

return ’Ta moyenne est de ${sommeNote/nbNote} /207;
}
console.log(moyenne[15, 20, 5, 0]);
console.log(moyenne(25, 12, 14));

Ta moyenne est de 10/20
Ta moyenne est de NaN/20

Premiére partie Page 18 Killian Reine

Le langage JavaScript 2024-2025

Comme vous le voyez, la fonction codée necessite d’entrer un tableau de note en parameétre. Malgré tout,
lorsque I'on entre des nombres a I'aveugle, la fonction s’exécute quand méme, malgré que le résultat
obtenu ne soit pas celui attendu.
Lobjectif ici est donc que la fonction retourne une erreur lorsque I'entrée notes n’est pas un tableau.
Nous allons donc rajouter un test.
Exemple 8.1
function moyenne(notes) {
if (YArray.isArray(notes)) {
throw new Error(’Les notes doivent &tre contenues dans un tableau’);
}
nbNote = notes.length;
sommeNote = 0;
for(i = 0; i<notes.length; i++) {
sommeNote += notes[i];
}
return ’Ta moyenne est de ${sommeNote/nbNote} /207;
}
console.log(moyenne[15, 20, 5, 0]);
console.log(moyenne(25, 12, 14));

Ta moyenne est de 10/20
ERROR

Jusqu’ici, nous avons réussi a faire planter notre programme si les notes ne sont pas un tableau. Mais moi je
veux que loe code affiche le message d’erreur souhaité.
On utilise alors try ...catch
On reprend notre code, en ajoutant les modifications.
try {
console.log(moyenne[15, 20, 5, 0]);
console.log(moyenne(25, 12, 14));

+
catch (e) {

console.error(e.message); // Afficher le message d’erreur
}

Ta moyenne est de 10/20
Les notes doivent étres contenues dans un tableau.

8.1 Vérification des types

Opérateur typeof

Il est possible d’afficher le type d’'une valeur (variable) en utilisant la forme suivante :

console.log(typeof variable);

Exemple 8.2
La fonction suivante renvoie true si le paramétre donné est de type number, false sinon.
function verifNombre (nb){

type = typeof nombre;

return type=="number";

3

Premiére partie Page 19 Killian Reine

Le langage JavaScript 2024-2025

8.2 Vérification spécifique des objets

Objet de type array

Dans I'exemple global, nous avons vu comment vérifié si une variable est un objet de type array (= tableau).

Array.isArray(variable)

Objet de type Date

Linstruction suivante permet de vérifier si variable est bien une instance d’objet Date.

variable instanceof Date

(@ Remarque

La forme instanceof fonctionne aussi pour vérifier si une variable est une instance de :
* RegExp, une expression réguliére
* Error, une erreur
Les informations relatives a ces nouveaux objets encore inconnus seront explicitées dans la partie suivante.

Vérification NaN, Not-a-number

Number . isNaN(variable)

9 Objets et types avancés

9.1 Objet Date

-

Définition
En JavaScript, Date est un objet utilisé pour manipuler les dates et les heures. Ce dernier est associé a de
nombreuses méthodes permettant de formater, créer, comparer et calculer des dates et des heures.

Méthode associées a I'objet Date

» Récuperer la date actuelle

let variable = new Date();
» Récupérer une date spécifique

let dateSpecifique = new Date(’annee-mois-jour’) ;

» Ultiliser les arguments séparés
let dateSpecifique = new Date(annee, mois, jour);
» Timestamp, milliseconde depuis le 1er janvier 1970, UTC

let dateSpecifique = new Date(nbMillisecondes) ;

Premiére partie Page 20 Killian Reine

Le langage JavaScript 2024-2025

(8 Remarque
Il est aussi possible de récupérer 'année uniquement, ou autre grace aux méthodes suivantes :
* date.getFullYear(); * date.getDay(); * date.getSeconds();
* date.getMonth(); * date.getHours();
* date.getDate(); * date.getMinutes(); * date.getMilliseconds();

Attention, lorsque vous voulez vous méme définir la date, vous remplacer get par set mais prennez garde,
les mois sont numérotés comme suit 0 pour janvier et 11 pour décembre !

9.2 Les expressions régulieres

Définition
Les expressions régulieres (regex) sont des motifs, utilisés pour trouver ou manipuler du texte dans des

chaines de caractéres.
Elles permettent ainsi de rechercher des mots, caractéres, motifs spécifiques, remplacer, extraires,

9.2.1 Création d’une expression réguliére

» Avec une expression * En créant un objet
p
let regex = /motif/; let regex = new RegExp(’motif’);

9.2.2 Recherche de motif dans une chaine de caractére

Exemple 9.1

let regex = /abc/;
console.log(regex.test("abcdef"));
console.log(regex.test("defg"));

true
false

9.2.3 Renvoyer toute les correspondances

Exemple 9.2
let regex = /(a)(bc)/;
let chaineTest = "cdefabc";

let result = regex.exec(chaineTest);
console.log(result);

[[abc’, ’a’, ’be’, index : 4, input : 'cdefabe’, groups : undefined]

let regex2 = /(abc)d/;
let result2 = regex2.exec(chaineTest);
console.log(result2);

null

Premiére partie Page 21 Killian Reine

Le langage JavaScript 2024-2025

9.2.4 Renvoyer l'indice de correspondance

Exemple 9.3
let regex = /(a)(bc)/;
let chaineTest = "cdefabc";

let result = chaineTest.search(regex) ;
console.log(result);

4

let regex2 = /(abc)d/;
let result2 = chaineTest.search(regex2);
console.log(result2);

-1

9.2.5 Remplacement de motif

Exemple 9.4

let str = ’abcdef’;

let nouvStr = str.replace(/abc/, ’xyz’);
console.log(nouvStr) ;

xyzdef

(8 Remarque

Il existe aussi les classes de caractéres

» /[abcl/
a,bouc

» /[~abcl/
tout les caractéres sauf a, bou c

Les expressions régulieres peuvent étre utilisées lors de la validation d’'un email, pour vérifier si le format est bien
respecté.

/OVaIidité d’un email

let emailRegex = /"["\sQ] + @Q["\s@] +\.["\s@Q]+%/;
console.log(emailRegex.test (’example@example.com’));
console.log(emailRegex.test(’invalid-email’));

true
false

9.3 La valeur NaN

Définition
| NaN (Not a Number) est une valeur spéciale qui indique qu’une opération a échouée ou alors qu’une valeur
n’est pas un nombre valide.

Premiére partie Page 22 Killian Reine

Le langage JavaScript 2024-2025

(8 Remarque

Imaginons que votre code convertisse une chaine de caractére en nombre grace a la fonction number :
let nb = Number("du texte");

La valeur retournée sera donc NaN puisque convertir une chaine de caractére n’est pas possible, I'opération a
donc échouée d’ou le NaN.
Opération valide

let nb = Number("1560")

10 Meéthodes associées aux objets de type string

La méthode charAt()

Lorsque I'on souhaite récupérer un caractere a un indice spécifigue dans une chaine, on utilise la méthode
charAt() :

chaineCaract.charAt (indice)

(8 Remarque

| Imaginons la chaine "chat", le mot est composé de 4 lettres (indice 0 a 3). Si je sors dépasse l'intervalle des
indices, la méthode me renverra "", la chaine vide.

Exemple 10.1

let chaine = "étudiant";
console.log(chaine.charAt(0);
console.log(chaine.charAt(8);

lléll

(8 Remarque

ECMAScript 5, a introduit une nouvelle maniére de récupérer le caractére a l'indice i :

let lettre = "chaine"[i];

Il est aussi possible de comparer les caractéres.

Exemple 10.2

let a="o0";

let b="h";
console.log(a<b);
console.log(a>b);

false
true

Premiére partie Page 23 Killian Reine

Le langage JavaScript 2024-2025

/OI'EgaIité de deux chaines de caracteres
Intuitivement, pour vérifier si une chaine chl est égale a une autre chaine ch2, vous allez utiliser la forme :

chl == ch2

Malheureusement, si vous avez chi="chat" et ch2="Chat", le programme vous renverra false car |'égalité
avec == prend en compte la casse du texte.
Voici comment contrer ce probleme :

function egalite(chl, ch2){
return chl.toUpperCase() === ch2.toUpperCase();

}

Type string primitif :

» immuable, c’est a dire qu’elles ne peuvent pas étre modifiées apres leur création
» elle sont plus lIégéres en terme de ressource puisqu’elles sont stockées dans la pile mémoire directement
» Leur syntaxe est simplifiée entre " ou ’.

Exemple 10.3

let primi = "Bonjour";

Objet string :
» mutable, peuvent étre modifiés
» possedent des méthodes associé
» les objets string sont construit a 'aide d’un constructeur.

Exemple 10.4
let objetString = new String("Bonjour");

Exemple 10.5

Additionner avec des chaines de caractéres.
let primiString = "2 + 2";

let objetString = new String("2 + 2");
console.log(eval (primiString)) ;
console.log(eval(objetString));

4
|l2 + 2||

La fonction intégrée eval

La fonction intégrée eval() permet de prendre en argument une chaine de caractere et de I'évaluer comme
du code JavaScript.

code (expression)

() Remarque

Un objet string peut tout de méme étre converti en équivalent de type primitif :

objetString.valueOff();

Premiére partie Page 24 Killian Reine

Le langage JavaScript 2024-2025

11 Les timers

11.1 setTimeout

-

Définition
| La méthode setTimeout est utilisée pour exécuter une fonction (un bloc de code) aprés un certain temps
(exprimé en millisecondes).

L J

Instruction générale de setTimeout

setTimeout (fonction, delai, ...args)

» fonction, la fonction a exécuter apres le délai.
» delai, le délai en millisecondes avant exécution de la fonction

* ...args (facultatifs), des arguments supplémentaires a passer a la fonction

Exemple 11.1.1
function direBonjour(){
console.log("Bonjour") ;

}
setTimeout (bonjour, 1000) ;

Exemple 11.1.2

setTimeout (direBonjour(){
console.log("Bonjour") ;

}, 1000);

Exemple 11.2
function direBonjour (prenom){
console.log(’Bonjour ${prenom}’);

}
setTimeout (bonjour, 1000, "Alice");

(8 Remarque

| Il est tout a fait possible d’annuléer un setTimeout avec :

clearTimeout (timer) ;

11.2 setInterval

Définition
Le méthode setInterval est utilisée pour exécuter une fonction ou un bloc de code de maniére répétée, a

intervalle régulier donné en millisecondes.
setInterval continuera d’exécuter le morceau de code tant qu’'on ne lui dit pas d’arréter.

Instruction générale de la méthode setInterval

setInterval(fonction, intervalle, ...args)

 fonction, le bloc de code a exécuter
+ intervalle, au bout de combien de temps le code se répéte (millisecondes)
* ...args (facultatifs), arguments passés a la fonction

Premiére partie Page 25 Killian Reine

Le langage JavaScript 2024-2025

Exemple 11.3
setInterval (function() {

console.log("Un message & afficher toutes les 3 secondes");
}, 3000);

() Remarque

On peut aussi annuler / arréter un setInterval grace a l'instruction :

clearInterval (intervalle) ;

12 Code asynchrone

Dans la vie courante, on dit que deux actions sont synchrone lorsqu’elles se déroulent simultanément (en méme
temps) ou de maniére comme son nom l'indique synchroniser. Au contraire, deux actions sont asynchrone lors-
qgu’elles ne se déroulent pas en méme temps.

Définition
En informatique,

» deux opérations sont dites synchrone lorsque la seconde opération attend que la premiére est terminée
pour s’exécuter. Ducoup, le début de I'opération n + 1 dépend de la complétitude de I'opération n.
On dit alors que les opérations sont dépendantes les unes des autres.

» deux opérations sont donc dites asynchrone lorsqu’elles sont indépendantes les unes des autres, c’est
a dire que I'opération n + 1 n’a pas besoin de I'opération n pour démarer.

Pour le moment, restons sur le principe de dépendance pour comprendre les définitions de synchrone et
d’asynchrone.

/OSynchrone et asynchrone
Prenons un exemple assez imagé, nous avons été manger dans deux restaurants il y a peu et I'organisation
de ces deux restaurants nous ont interpelées.

+ Situation asynchrone :
Les clients sont assis a plusieurs tables, si ils le souhaitent, ils peuvent passer commande en méme
temps et étre servis dés que leur plat sera prét. En informatique on parle d’opérations asynchrone. Deux
prises de commandes sont indépendantes et I'une n’affecte pas l'autre.

« Situation synchrone :
Maintenant, on imagine que le restaurant ne posséde qu’une unique employé qui est a la fois cuisinier
et serveur, dans ce cas, il ne peut prendre qu’'une commande a la fois et pourra en prendre une autre
lorsqu’il aura servit la table courante. Par contre, ici les opérations sont dites synchrones.

() Remarque

Pourtant, par défaut, JavaScript est un langage synchrone ce qui signifie que les opérations vont étre exécutées
les unes a la suite des autres. Chaque opérations doit donc attendre que la précédante ait terminée, 'opération
précédante est appelée opération bloquante. De plus JavaScript ne peut exécuter qu’une ligne a la fois (le
code s’exécute sur un thread, en gros un fil / processus unique).

Cela peut poser des problémes, par exemple, si une fonction prend trop de temps a s’exécuter, cette derniere
vas alors bloquer tout le reste des instructions suivante, le programme va donc sembler « arrété » du point de
vue de l'utilisateur.

En JavaScript, les opérations asynchrones sont placées dans une file d’attente qui vont s’exécuter aprés que la téche
principale (main thread) ait terminée ses opérations. Ce qui ne bloque pas le reste du code.

Premiére partie Page 26 Killian Reine

Le langage JavaScript 2024-2025

| L, Objectif
Lidée principale du principe d’asynchrone est que le reste du code puisse continuer a s’exécuter pendant
gu’une opération, plus longue, qui demande une valeur, ... est en cours. D’'un c6té navigateur web, cela permet
un affichage plus rapide des pages et une meilleure expérience.

%’ Définition

Une fonction de rappel (ou callback) est une fonction qui va pouvoir étre rappelée a un moment et/ ou si les
conditions sont réunies.

Les fonctions de rappel étaient utilisé par le premier outil en JavaScript qui a introduit la notion de code asyn-
chrone.

Exemple 12.1

Précédemment, nous avons rencontré la méthode setTimeout () qui elle est asynchrone. Ce qui signifie que
la suite du code n’a pas besoin d’attendre que le setTimeout Soit terminé pour s’exécuter.

setTimeout (alert, 5000, "Message aprés 5 secondes"):

alert("Suite du script");

Suite du script
Message aprés 5 secondes

(8 Remarque

Les fonctions de rappel sont une alternative au code synchrone mais elles possédent des défauts :
» On ne peut pas savoir quand notre fonction asynchrone aura fini de s’exécuter
» On ne peut donc pas connaitre I'ordre d’exécution des fonctions

Cela pose surtout probléme si I'exécution d’'une fonction asynchrone dépend elle méme d’une fonction asyn-
chrone.

On peut se passer de la remarque lorsque I'on a qu’une seule opération asynchrone ou si le peu d’opérations
asynchrone qui sont présente sont totalement indépendante.

13 Les promesses, Promise

Pendant longtemps, les fonctions de rappel étaient la seule solution pour pouvoir exécuter du code asynchrone.
Cependant, en 2015, introduction d’un outil permettant la création et la gestion de code asynchrone, les promesses
avec I'objet constructeur Promise. Les promise sont encore aujourd’hui la solution la plus puissante permettant
d'utiliser 'asynchrone dans nos script.

Définition
Une Promise est donc un objet qui permet de représenter I'état d’'une opération asynchrone. Une Promise,
comme dans la vie réelle peut étre :

» Opération en cours

» Opération terminée avec succes

» Opération échouée

Alors, au lieu d’appeler de nombreuses fonctions de rappel, nous allons créer ou utiliser des fonctions qui vont
renvoyer des promesses et nous allons introduire des fonctions de rappel dans les Promise. Ce qui permettra alors
de connaitre I'ordre d’exécution des opérations asynchrone.

Premiére partie Page 27 Killian Reine

Le langage JavaScript 2024-2025

Structure d’une Promise

const promesse = new Promise((resolve, reject) => {
// T&ches asynchrone & réaliser
// Appel de resolve() si la promesse est résolue (= tenue)
// Appel de reject() si la promesse a échouée

}

(8 Remarque

Une Promise permet donc de de représenter et manipuler un résultat, un événement futur ce qui nous permet
donc de définir ce que va faire le programme a I'avance aprés une opération asynchrone terminée, qu’elle soit
résolue ou échouée.

Dans la majeure partie des cas, nous n'aurons pas besoin de créer nos propre Promise en utilisant le contructeur
mais plutét de manipuler les promesse déja créées. Les promesses vont étre utilisé le plus souvent par des API
JavaScript réalisant des opérations asynchrones.

Exemple 13.1

Lorsque vous appelez vos amis sur I'appli Discord, I'on vous demande quel caméra utiliser (si il y en a une, et
lagquelle) et pareil pour le micro.

Sans code asynchrone, la fenétre du navigateur / appli vas rester bloquée pour I'utilisateur tant que ce dernier
n’ai pas cclairement autorisé quel caméra/micro utiliser.

Apres la création d’'une promesse, cette derniére vas alors posséder deux propriétés :

* state, qui représente I'état de la promesse
En attente (pending), fulfilled (résolue) ou rejected (échouée).

* result qui vas pouvoir contenir la valeur de notre choix

(8 Remarque

| Létat final d’'une promesse ne peut pas étre changé.

Définition
La méthode then() est utilisée pour obtenir et exploiter le résultat d’'une Promise.

Autrement dit, on utilise la méthode then pour définir ce qu'’il se passera si la promesse et résolue ou si elle a
échouée.

Exemple 13.2
let promesse = new Promise((resolve, rejecte) => {
let reussite = true;
if (reussite) {
resolve("La promesse a été résolue");
} else {
reject("La promesse a échouée");
}
1;
promesse
.then((message) => {
console.log(message) ;
b
.catch((erreur) => {
console.log(erreur) ;

B

[La promesse a été résolue

Premiére partie Page 28 Killian Reine

Le langage JavaScript 2024-2025

Définition
| La méthode catch() quant-a elle, est utilisée lorsqu’une promesse est rompue.

13.1 Chainage des promesses

Chainer des méthodes c’est les exécuter les unes aprés les autres. Cette méthode va s’avérer utile pour exécuter
des opérations asynchrones les unes a la suite des autres dans un ordre précis.

Cette méthode est possible car la méthode then() renvoie une promesse. On vas donc pouvoir utiliser une méthode
then sur le résultat renvoyé par la premiére méthode then.

Exemple 13.3
Dans notre exemple on souhaite réaliser deux opérations asynchrones :

» Récupérer des données sur un serveur
+ Traiter les données récupérées

function recupererDonnees(){
return new Promise((resolve, reject) => {
setTimeout (() => {
const donnees = { id: 1, nom: "Alice" };
console.log("Données récupérées", donnees);
resolve (donnees) ;
}, 2000);
b;
}
function traiterDonnees(donnees) {
return new Promise((resolve, reject) => {
setTimeout (() => {
donnees.traitement = "Données traitées";
console.log("Données aprés traitement", donnees);
resolve (donnees) ;
}, 1000);
H;
}
// Chainage des promesses
recupererDonnees()
.then((donnees => {
// Appel de la seconde fonction asynchrone
return traiterDonnees(donnees);
b
.then((donneesTraitees) => {
// Traitement final aprés que les données soient traitées

console.log(Traitement final :", donneesTraitees);
19)
.catch((erreur) => {

console.log("Une erreur est survenue !", erreur);
B;
Démarage...

2 secondes s’écoulent les données sont récupérées

Données récupérées : id : 1, nom : ’Alice’

1 seconde s’écoule, le traitement est efféctuée

Données aprés traitement : id : 1, nom : ’Alice’, traitement : 'Données traitées avec succes’
Traitement final : id : 1, nom : 'Alice’, traitement : ‘Données traitées avec succes’

Premiére partie Page 29 Killian Reine

Le langage JavaScript 2024-2025

Remarque

| Le texte en gris dans le résultat du programme ne s’affiche pas, il n’est la que pour nous permettre de mieux
comprendre la simulation.

13.2 Composition de promesses

Définition
| Composer des fonctions signifie combiner plusieurs fonctions pour en donner une nouvelle.

De la méme maniere, nous pouvons composer des promesses. Heureusement des méthodes associées au construc-
teur Promise() existent.

(8 Remarque

| Nous, on a vu que l'on pouvait utiliser resolve() et reject() qui nous permettent de créer manuellement
des promesses déja résolues ou échouées et qui vont étre utiles pour démarer une chaine manuellement.

r/OLa méthode a11()

La méthode all prend en argument un tableau de promesses et retourne une nouvelle promesse. Cette der-
niére sera résolue si 'ensemble des promesses contenues dans le tableau sont résolues.
Ce qui signifigue que si au moins une des promesse échoue, la nouvelle promesse renvoyée sera échouée.

Structure générale de la méthode all()

Promise.all([promessel, promesse2, ...])
.then(([vall, val2, ...]) => {
// Code a exécutée si toute les promesses sont résolues
b

.catch((erreur) => {
// Code a exécutée si une promesse échoue

B
14 Lasyntaxe async ... await
¢/ Définition

La déclaration async function et le mot clé await sont des « sucres syntaxiques », autrement dit, ils
n’ajoutent pas de nouvelle fonctionnalité a JavaScript, mais ils permettent d’utiliser des promesses avec un
code plus intuitif et qui ressemble d’avantage a la syntaxe du langage, a laquelle nous somme habitués.

lls sont apparus en 2017 et aujourd’hui utilisé par les APl modernes.

L J

Utiliser le mot clé async devant une fonction va alors faire en sorte que votre fonction retourne une promesse.
Si votre fonction retourne explicitement une valeur, alors cette derniére sera envelopper dans une promesse.

Exemple 14.1
async function bonjour(){
return "bonjour";

}

console.log(bonjour());

[Promise : { bonjour }

Premiére partie Page 30 Killian Reine

Le langage JavaScript 2024-2025

Remarque

| Le mot clé await est valide uniquement dans les fonctions asynchrones définies avec async.

Le mot clé await permet d’intérompre I'exécution d’'une fonction asynchrone tant qu’une promesse n’est pas résolue.
Ensuite, cette derniére pourra continuer a s’exécuter et renverra sa valeure finale d’exécution.

Exemple 14.2
async function test() {
const promesse = new Promise((resolve, reject) => {
setTimeout (() => resolve("0k"), 2000)
e
let resultat = wait promesse;
console.log(resultat);

3

Remarque

| await promise retourne le résultat d'une promesse qui est résolue (échec ou résolue).

La syntaxe try ... catch permet de retourné I'erreur causée par un await.

Structure de la syntaxe try ... catch

try {

// Code a tester

// Alerte a retournée si erreur
} catch(erreur) {

// Affichage de 1’erreur
}

\.

(@ Remarque

| all() estaussi utilisable avec la syntaxe async/wait.

15 La méthode fetch()

La méthode fetch()

La méthode fetch() permet de faire des appels HTTP afin de récupérer des ressources sur le réseau.
Cette derniére utilise le méme systéme que les promesses vues précédemment.

Structure de la méthode fetch()

fetch("url", option)
.then(reponse => {
// Traitement de la réponse regue
b;
.catch(erreur => {
// Gestion des erreurs

s

La promesse est résolue et retourne un objet Response. Cet objet contient des informations détaillées sur la réponse
de la requéte HTTP, y compris le statut de la réponse, les en-tétes, et les données renvoyées par le serveur.

Premiére partie Page 31 Killian Reine

Le langage JavaScript 2024-2025

(8 Remarque
Quelques propriétés associées a I'objet Response.

» ok est un booléen qui vaut true si le statut HTTP est compris entre 200 et 299, ce qui indique que la
requéte a été traitée avec succes

» status renvoi le statut HTTP de la réponse (200 pour OK, 404 pour Not Found)
» statusText indique le message associé au statut HTTP (par exemple "OK" pour 200)

» header, url, type, ...

text() et json()

» json() renvoila réponse au format JSON
» text() renvoi le texte de la réponse

16 Les modules

Pour vos projets, créer l'intégralité du code sur un seul et méme fichier n’est pas pratique. C’est la raison pour laquelle
les modules sont indispensables, ils vont vous permettre de diviser votre code en différents fichiers, ce pour vous
aider a bien l'organiser.

Il est possible d’exporter des variables pour les rendres accessibles via un autre fichier.

Exemple 16.1
export const var = "Alicia";
export function maFonction () {
console.log("Bonjour tout le monde");
}
export class maClass () {
constructor(param) {
this.param = param;

3

() Remarque

| Pour un fichier/module il ne peut n’y avoir gu’une exportation par défaut.
On utilisera alors export default...

Exemple 16.2
Ici, on souhaite importer dans le fichier import. js rapidement les informations de I'exemple 16.1 contenues
dans le fichier exemple. js.

import{ var, maFonction, maClass } from "./exemple.js";
Pour importer tout le contenu d’un fichier

import * from "./exemple.js";

Premiére partie Page 32 Killian Reine

	Les variables
	Généralités sur les variables
	Types courrant de variable
	Oppérations sur les variables
	Oppérations arithmétique
	Incrémentation et décrémentation
	Opération de comparaison
	Opérations logique

	Concaténation des chaînes de caractères
	Conversion de variable
	Types plus complexes
	Les objets
	Les tableaux

	Les types spéciaux

	Copie par valeur, copie par référence
	Copie par référence
	Copie par valeur

	Les conditions
	Le switch / case
	Le ternaire

	 Portée des variables
	Les boucles
	La boucle while
	La boucle for
	Boucle for...in
	Boucle for...of

	Les fonctions
	Portées des variables
	Hosting de variable
	Hosting de fonction

	L'opérateur this
	Les fonctions fléchées
	Fonctions usuelles

	Les classes
	Introduction aux prototypes
	Création d'objets et de prototypes
	Fonction de constructeur
	Constructeur de class
	Les getters et les setters

	Propriété publique, propriété privée
	Introduction à l'héritage de class
	Exemple avec les fonctions de constructeur
	Exemple avec les class

	Gestion des erreurs
	Vérification des types
	Vérification spécifique des objets

	Objets et types avancés
	Objet Date
	Les expressions régulières
	Création d'une expression régulière
	Recherche de motif dans une chaine de caractère
	Renvoyer toute les correspondances
	Renvoyer l'indice de correspondance
	Remplacement de motif

	La valeur NaN

	Méthodes associées aux objets de type string
	Les timers
	setTimeout
	setInterval

	Code asynchrone
	Les promesses, Promise
	Chainage des promesses
	Composition de promesses

	La syntaxe async ... await
	La méthode fetch()
	Les modules

